Chemical and Biological Status of Killarney Park Lakes (1995-1997)

A study of lakes in the early stages of recovery from acidification

Ed Snucins and John Gunn
Ontario Ministry of Natural Resources
Cooperative Freshwater Ecology Unit
Dept. of Biology, Laurentian University
Sudbury, Ontario P3E 2C6

PRIOR TO USE OF ANY OF THE RAW DATA CONTAINED IN THIS REPORT, PLEASE OBTAIN PERMISSION FROM THE AUTHORS.

Killarney Lakes Survey 1995-1997

Project Biologist:

Ed Snucins

Cooperative Freshwater Ecology Unit Ontario Ministry of Natural Resources Biology Department, Laurentian University

Managing Scientist:

John Gunn

Cooperative Freshwater Ecology Unit Ontario Ministry of Natural Resources Biology Department, Laurentian University

Laboratory Supervisor:

Rod Sein

Cooperative Freshwater Ecology Unit Ontario Ministry of Natural Resources

Survey Crews

1995

1996

1997

Marc Aubin Carol Chenard Derek Cole Carolyn Devries Tom Dwyer Martin St-Jacques Matthew Binks Marc Donato David Gonder Lee Haslam Sarah Hunt Jennifer Shaw

Michelle Thorkelson

Christine Brereton
Eric Chernoff
Kyle Hawes
Sara McIlraith
Scott Norris
Jennifer Shaw
Michelle Thorkelson

Lisa Benedetti

Project Collaborators:

Bill Keller (Cooperative Freshwater Ecology Unit)

Ontario Ministry of Northern Development & Mines

Sudbury, Ontario

Jim Carbone

Ontario Ministry of Environment

Sudbury, Ontario

Species Identification:

Yves Alarie (Laurentian University) Ron Griffiths (Aquatic Ecostudies)

Raymond Hutchinson

George Morgan (Cooperative Freshwater Ecology Unit)

Marty Rouse (Royal Ontario Museum)

Project Contributors:

Ontario Ministry of Natural Resources Ontario Ministry of Environment

Ontario Ministry of Northern Development and Mines

Ontario Parks Falconbridge Limited INCO Limited Laurentian University

Canadian Wildlife Service of Environment Canada

Endangered Species Recovery Fund (World Wildlife Fund, Environment Canada)

TABLE OF CONTENTS

铷

List of Tables		. iii
List of Figures		. V
List of Append	lices	. vii
EXECUTIVE	SUMMARY	. 1
BACKGROU	ND	. 6
INTRODUCT	ION	. 8
STUDY SITE	DESCRIPTION	. 9
	Lithology	. 9
	Waterbodies	. 11
METHODS.		. 13
	Personnel training	. 13
	Water Quality	. 13
	Fish	. 13
	Testing of Nordic Standard	
	Zooplankton	
	Macroinvertebrates	
	Mayflies	
	Chikanishing River Invertebrates	
	Crayfish	
	Leeches	
	Within-lake Invertebrate Spatial Distributions	
	Amphibians, Reptiles, Birds, and Mammals	
	Water Temperature, Dissolved Oxygen, and Secchi Depth	
	Lake Mapping	
	Data Management	
RESULTS		
,	Water Quality	
	Dissolved Oxygen and Temperature	
	Physical Characteristics of Biological Survey Lakes	
	Status of Fish Communities	
	Fish Species Losses	
	Fishing Gear Effectiveness.	
	Plankton	
	Crayfish	
	Macrobenthos	
	Within-lake Invertebrate Spatial Distributions	
	Chikanishing River Invertebrates	
	Amphibians, Reptiles, Birds, and Mammals	
REFERENCE	S	
	♥ · · · · · · · · · · · · · · · · · · ·	100

LIST OF TABLES

in.

Table 1.	Summary of fishing effort (number of sets)
Table 2.	Summary of total effort (number of hours) and hours effort per hectare lake surface area
Table 3.	(a) Median, minimum, maximum and number of values zero and <t chemistry="" for="" td="" variables<="" water=""></t>
Table 4.	Water chemistry of six lakes on Blue Ridge sampled August 20, 1973 and August 27, 1996
Table 5.	Temperature and dissolved oxygen characteristics of lakes determined during biological surveys and winter water sampling
Table 6.	Weekly temperature profiles (August - September 1997) in A.Y. Jackson and George Lakes
Table 7.	Thermocline depths and dissolved oxygen levels measured during thermal survey August 25 - September 1, 1997
Table 8.	Pearson correlation matrix for selected variables (log transformed) measured during synoptic thermal survey (a) All thermally stratified lakes (N=63) (b) Thermally stratified lake trout lakes (N=18)
Table 9.	Physical characteristics of biological survey lakes
Table 10.	List of fish species with pH range of lakes and frequency of occurence 73
Table 11.	List of fish species by lake
Table 12.	Fish species richness of lakes by drainage basin
Table 13.	Fish stocking in biological survey lakes recorded by Ontario Ministry of Natural Resources
Table 14.	Known and probable fish losses from Killarney Park lakes

LIST OF TABLES (continued)

协

Table 15.	Estimated number of fish species missing from lakes that were biologically sampled, currently have pH < 6.0 and area > 3.4 ha
Table 16.	Total number of fish populations captured by each gear type in the 54 lakes that were sampled with all gears
Table 17.	Number of populations, by species, captured by each gear in the 54 lakes fished with all gears
Table 18.	Crayfish species captured in each lake and method of capture
Table 19.	List of mayfly species captured by lake
Table 20.	List of amphipods captured by lake
Table 21.	Invertebrates collected in Chikanishing River during winter of 1995-1996 at three sites downstream of George Lake
Table 22.	Animals observed during biological surveys

STREET, ST. VAN.

a remaining outside

LIST OF FIGURES

ìħ.

Figure 1.	Location of Killarney Provincial Park in relation to Sudbury and the Sudbury sulphur deposition zone as described by Neary et al. (1990)
Figure 2.	Lithology of Killarney Provincial Park
Figure 3.	Major watersheds of Killarney Provincial Park
Figure 4.	Location of water sampled lakes
Figure 5.	Frequency distribution of surface areas of water sampled lakes
Figure 6.	Frequency distribution of elevations of water sampled lakes
Figure 7.	Frequency distributions of water chemistry variables
Figure 8.	Lake pH in Killarney Provincial Park
Figure 9.	Alkalinity in Killarney Provincial Park lakes
Figure 10.	Calcium levels in Killarney Provincial Park lakes
Figure 11.	Distribution of DOC levels in Killarney lakes relative to other Ontario lakes
Figure 12.	DOC levels in Killarney Provincial Park lakes
Figure 13.	Frequency distribution of Secchi depths
Figure 14.	Aluminum levels in Killarney Provincial Park lakes
Figure 15.	Recovery rates of acid-damaged Killarney Park lake trout lakes 50
Figure 16.	Frequency distributions for physical characteristics of biological survey lakes
Figure 17.	Frequency distribution of fish species richness
Figure 18.	Location of fishless lakes

LIST OF FIGURES (continued)

15

_	ber of fish species sampled in Killarney lakes (pH > 6) versus ber expected based upon lake area	
Figure 20. Com	parison of catches: Killarney Inventory versus Nordic Standard 96	
Figure 21. Cray	fish distributions in Killarney Provincial Park lakes	
Figure 22. Cray	fish distributions in Killarney Provincial Park streams	
Figure 23. Loca	tion of lakes with Stenonema femoratum	
Figure 24. Loca	tion of lakes with Hyalella azteca	
Figure 25. Capt	ure locations for Stenonema femoratum in Low and George Lakes 117	
Figure 26. Capt	ure locations for Stenacron interpunctatum in Low and George Lakes 118	
Figure 27. Capto	ure locations for Hyalella azteca in Low and George Lakes 119	
Figure 28. Capte	ure locations for Orconectes propinquus in Low and George Lakes 120	
Figure 29. Capto	ure locations for Cambarus robustus in Low and George Lakes 121	

LIST OF APPENDICES

Appendix A	1996 Water Sampling Methods and Results
Appendix B	Interlaboratory Study for Quality Assurance / Quality Control Part B: Total Alkalinity, pH, Cations, Anions, and Trace Metals in Sudbury Area Surface Waters
Appendix C	1997 Water Sampling Methods and Results
Appendix D	Description of fish sampling gear
Appendix E	Sudbury Extensive Survey Methods and Results: Killarney Lakes 1980-1997
Appendix F	Catch-per-unit-effort (number/hour) in wire-mesh minnow traps
Appendix G	Catch-per-unit-effort (number/hour) in trap nets
Appendix H	Catch-per-unit-effort (number/hour) in plexiglass traps
Appendix I	Catch-per-unit-effort (number/hour) in gill nets
Appendix J	Animals observed during Canadian Wildlife Service helicopter surveys May 14-15 and July 12, 1996

EXECUTIVE SUMMARY

A STREET, STRE

Billion Hinders

This study was designed to obtain a current inventory of water quality and biological communities for the lakes and ponds of Killarney Provincial Park. Killarney Park is a 48,000 ha wilderness area containing about 600 waterbodies (0.03 - 810 ha). This report describes the methods, summarizes the data and presents some initial interpretation from inventory work conducted during 1995 - 1997. The inventory project was supported as a partnership between university, government, industry and non-government organizations. It was designed to establish not only the current state of the Park environment, but also as a baseline for future research, monitoring, restoration and educational programs.

Killarney Park is well known as a site of significant environmental damage from acid deposition. Bedrock geology and location relative to pollution sources combined to create this situation. The park is dominated by the La Cloche Mountain Range, a geological formation composed mainly of orthoquartzite, a highly erosion-resistant bedrock that provides little buffering against acid precipitation. Killarney is located 40-60 km southwest of the large sulphide ore smelters in Sudbury, Ontario and within a continental zone of high acid deposition (> 20 kg/ha SO₄) originating from a vast array of long-range industrial sources. Not surprisingly then, the Killarney lakes were some of the first lakes in North America to be acidified by atmospheric pollutants. Most of the Killarney lakes were damaged by the late 1970's, resulting in the loss of thousands of individual populations of fish, plankton, benthic invertebrates, and amphibians.

In recent decades Killarney has again been noteworthy, but this time as a site where substantial recovery from acidification has been observed as a result of major reductions in emissions at local and long-range sources. The evidence of recovery was the principal reason for initiating a parkwide inventory of current conditions.

Water samples were obtained from 154 lakes (87.7% of lakes by surface area) in the 8 major drainage basins, with most sampling occurring in the winter of 1996 and generally a single sample used to characterize the chemistry. The lakes exhibited a broad range in pH (4.3 - 7.6; median 5.2). There was historic evidence that pH had risen by about 0.5 units for a well-studied set of 14 lake trout lakes, but overall it should be noted that a large number of lakes remain acidic (110/154 lakes with pH < 6.0) and vulnerable to acidification (61/154 lakes with tip alkalinity < 0 mg/L).

Metals mobilized from acid deposition on watershed soils (Al, Mn, Zn) were present in high concentrations in low pH lakes. The concentration of nickel (range 0-20 ug/L), a metal presumably deposited as particulates from the area smelters, showed elevations above expected background levels but was low relative to provincial water quality guidelines.

A special feature of the La Cloche Mountain lakes is their exceptional clarity. Relative to other Ontario lakes, an unusually high proportion (43/153) of Killarney's lakes have DOC < 2 mg/L. There was a strong negative correlation between DOC and Secchi depth and the depth of the late summer thermocline. Low DOC, high clarity (Secchi depth up to 30 m) lakes are

15

generally located on the Lorrain and Bar River Formations. High DOC, brown-coloured waters (Secchi depth as low as 1.1 m) exist primarily in lowland lakes with wetlands.

Biological surveys targeting specific groups or indicator species (rather than attempting complete coverage) were completed on 119 lakes. Some methodological testing of gear and sampling intensity to detect rare specimens was conducted, but most lakes received a rather standard assessment using a broad range of proven sampling techniques for assessing species presence (as opposed to abundance).

A total of 28 species of fish were caught during the survey. The two most common fish species were pumpkinseed and yellow perch. The ten species that were caught in at least 1/3 of the lakes and accounted for 90.6% of the total catch by number were: bluegill, brown bullhead, golden shiner, largemouth bass, northern pike, pumpkinseed, rock bass, smallmouth bass, white sucker, and yellow perch. The most acid-tolerant species, as suggested by their occurrence in lakes with pH < 5.0, were bluegill, brown bullhead, brook trout, golden shiner, pumpkinseed, and yellow perch. Fish found only in lakes with pH \geq 6.0 were blackchin shiner, blacknose shiner, finescale dace, johnnie darter, mimic shiner, rainbow smelt and slimy sculpin.

The number of fish species per lake ranged from 0 to 14, with a mean of 4.1 and a median of 3.0. The species richness of lakes with pH > 6.0 was similar to that of unacidified lakes in other parts of Ontario. Among the major drainage basins, the median species richness varied from 0 (Chikanishing River) to 6.5 (Howry Creek). Thirty-six percent (43/119) of the lakes did not have fish. All of the fishless lakes (pH 4.3 - 5.9) have watersheds underlain primarily by the Lorrain and Bar River Formations. The estimated number of fish populations lost from 55 of the biologically surveyed lakes (pH < 6.0, surface area > 3.4 ha) was 262.

The smallest waterbody in the province known to contain a native lake trout population (3.4 ha, Teardrop Lake) was discovered. It's lake trout population is notable for a unique gene assemblage and extremely slow growth rates. This lake is located on top of a ridge in the Bar River Formation and, unlike all other lakes situated on that bedrock type, was protected from acidification by an exposed vein of olivine diabase. The lake supports an undisturbed community of a wide variety of other native species (eg. Hyalella azteca, Stenonema femoratum, slimy sculpin) that may become the source of colonizers for nearby recovering lakes.

Natural recolonization by smallmouth bass and northern pike emmigrating from neighbouring lakes was documented in Johnnie and Freeland Lakes. Evidence was also found in other lakes of successful restoration by recent stocking. The transfer of wild adults re-established a self-sustaining smallmouth bass population in A.Y. Jackson Lake and spawning by introduced hatchery-reared lake trout was documented in three lakes. A largemouth bass population was established in Great Mountain Lake by an unauthorized introduction. In 1997 smallmouth bass were reintroduced to George Lake.

45

We observed 11 species of amphibians, 24 species of aquatic or fish-eating birds, 6 species of reptiles, and 5 species of aquatic mammals.

Four crayfish species were captured. <u>Cambarus robustus</u> and <u>C. bartoni</u> were found in the most acidic lakes (pH 4.3 - 7.3). <u>Orconectes propinquus</u> and <u>O. virilis</u> were restricted to lakes with more moderate pH (5.2-7.6). The most common crayfish found in the 48 streams that were surveyed were the two <u>Cambarus</u> species. Only three streams, all in the lowlands, contained <u>Orconectes</u>. Natural recolonization by immigration of <u>Orconetes</u> has occured in three recovering acid-damaged lakes.

Acid-sensitive species of mayflies and amphipods were generally resticted to the lowland lakes. Their absence from most high-elevation (ie. > 250 m) lakes was probably due to the acidity of those waters. The amphipod Hyalella azteca was found in 51 lakes (pH range 5.6 -7.6), including some recovering acidified lakes. The most acid-tolerant mayfly species Eurylophella temporalis and Leptophlebia were found in lakes with pH as low as 5.0. Mayflies of the family Baetidae were not found in lakes with pH < 6.2. Moderately acid-sensitive species Stenonema femoratum (pH \geq 5.6) and Stenacron interpunctatum (pH \geq 5.3) were found in some recovering acidified lakes, indicating that natural recolonization is taking place. Invertebrate sampling of the Chikanishing River revealed that mayflies, absent in 1981, have recolonized the lower river in response to improving water quality.

SURVEY SCHEDULE

	5661			1996			1997	
	May-Aug	Sept-Dec	Jan-Apr	May-Aug	Sept-Dec	Jan-Apr	May-Aug	Sept-Dec
Lake surveys (biological/physical)	****	*		***	*		****	*
Chemical survey (extensive)			**	*			*	
Annual chemical survey (8 lakes)	*			*			*	
Chikanishing River invertebrate recovery survey		*	* * * * *					
Mayfly survey				*			*	
CWS breeding bird survey				*				
Leech sampling				******	*			
Tadpole sampling				***	*		***	*
Within-lake invertebrate spatial distributions							** **	
Crayfish visual survey							* * *	
Synoptic thermal survey							*	***
Nordic Standard testing								*
Lake trout genetics					*			*

SAMPLING EFFORT (number of lakes)

	1995	1996	1997
Biological/physical lake surveys	35	49	35
Chemical survey (extensive)		150	4
Chemical survey QA/QC		30	
Chemical resurvey of Blue Ridge lakes		6	
Annual chemical survey (SES)	8	8	8
Mayfly survey		75	25
Mysis survey	4	6	
Plankton sampling	14	33	30
Tadpole sampling		49	35
Lake trout genetics sampling		2	2
CWS breeding bird survey		115	
Leech sampling		49	
Within-lake invertebrate spatial distribution			2
Synoptic thermal survey			86
Nordic Standard testing			2
Crayfish visual survey			75 + 48 streams

BACKGROUND

Killarney Provincial Park is a 48,110 hectare wilderness area located about 40 km southwest of Sudbury, Ontario (Figure 1). It encompasses most of the eastern half of the 80 km long La Cloche Mountain Range and contains one of the finest scenic landscapes in Ontario. The Killarney landscape has inspired the work of generations of Canadian artists including members of the famed Group of Seven.

The La Cloche Mountain Range is an ancient geological formation unique in Ontario. Its origins are in deposits of oceanic sand that were moulded by heat and pressure to form folds of quartzite rock. The landscape is dominated by the white quartzite, creating the illusion of year-round snow cover on the ridges. Thousands of years ago this rock was quarried by the aboriginal people to make stone tools. Today the quartzite, an extremely high grade silica used by industry, is commercially extracted at an open pit mine on Badgeley Island near the town of Killarney.

Despite its beauty and economic value, the quartzite has been a liability to the many lakes that exist on the ridges and in the valleys of the La Cloche Range. Quartzite is very resistant to mineral erosion and provides little buffering against acid precipitation. Due to this characteristic of the landscape and its location near the giant metal smelter complex at Sudbury, the Killarney lakes were some of the first in North America to be acidified by atmospheric pollutants (Beamish and Harvey 1972). The low pH of the lakes was linked, by the evidence of elevated sulphate and nickel concentrations, to the atmospheric deposition of pollutants from the Sudbury metal smelters (Beamish et al. 1975; Beamish and Van Loon 1977; Neary et al. 1990), but is also greatly affected by a continent-wide distribution of air pollutants.

Paleolimnological evidence suggests that some of the lakes in Killarney Park began to acidify as early as the 1920's (Dixit et al. 1992), but it wasn't until the late 1950's that fish species extirpations were first recorded (Harvey and Lee 1980). Within a matter of decades, by the late 1970's, it was clear that acidification had affected thousands of populations of fish, plankton, benthic invertebrates, amphibians and aquatic birds. The documentation of fish losses from Killarney lakes by Beamish and Harvey (1972) was one of the key findings that alerted North Americans to the threat posed by atmospheric transport of acid-generating pollutants.

During the middle part of this century the Sudbury metal smelters were one of the world's largest sources of acid-generating pollution, emitting over 2.5 million tonnes of sulfur into the atmosphere each year. However, through a combination of legislated control programs and modernization initiatives by industry, sulphur emissions were reduced over 90% by 1994 (Bouillon 1995). In eastern Canada, SO2 emissions from all sources were reduced by 53% between the early 1980's and 1994. The combined effects of these emission reductions at local and long-range sites has led to water quality recovery in many of the acid-stressed lakes near Sudbury (Keller and Pitblado 1986; Gunn and Keller 1990). The Sudbury region, including Killarney Park, is one of the only areas in North America, indeed in the entire world, where natural chemical and biological recovery of acidified lakes is occurring on a broad scale.

W

Figure 1. Location of Killarney Provincial Park in relation to Sudbury and the Sudbury sulphur deposition zone as described by Neary et al. (1990).

INTRODUCTION

A state-of-the-ecosystem study was conducted from 1995 to 1997 to obtain an up-to-date inventory of water quality and selected components of aquatic ecosystem diversity in Killarney Park lakes. These data will be used to: (1) design studies to examine the natural chemical and biological recovery of acidified lakes; and (2) plan the possible reintroduction of native species to some of the lakes. The special features of the Killarney lakes (extreme clarity, low productivity) also create the opportunity to use the survey data to serve as a baseline for monitoring the effects of global atmospheric change (eg. UV-B irradiance, climate) on aquatic ecosystems.

The focus of the project evolved slightly during the years. In the initial year the emphasis was on surveying the 94 named lakes within the boundary of Killarney Park for which most of the historical biological and chemical data existed. However, in 1996 the survey was expanded to adopt a watershed approach that required going beyond the park boundary to survey the headwater lakes and many small unnamed lakes within the Park.

The chemical survey was synoptic in nature, done only once on each lake. Some repeat sampling occured as part of an interlaboratory QA/QC study. Most of the water sampling was done during the winter of 1996 to coincide with the tri-annual monitoring of the lake trout lakes that has been done since 1980. The park's named lakes were targeted and unnamed waterbodies, generally > 1 ha surface area, were sampled only as time and funding allowed. The out-of-park headwater lakes that were later added to the study were sampled during the summer of 1996 and 1997. To address the issue of time trends we: (1) used summertime monitoring data collected annually since 1981 on a set of 8 lakes (Ontario Ministry of the Environment); (2) resampled the 6 lakes on Blue Ridge surveyed in 1973 by Beamish et al (1975); and (3) examined the wintertime pH monitoring data collected on 14 lake trout lakes in the park every three years since 1980.

Biological surveys were restricted to lakes that had been water sampled. Each lake was surveyed once, although Freeland Lake was done twice as a training exercise and two lakes were revisited to set gears not used during the first surveys. Species of interest (fish, benthic invertebrates, crayfish, zooplankton) were captured by targeting them with sampling gear or (in the case of amphibians, reptiles, birds, and mammals) by visual observation and capture in sampling gear set for other species. To deal with the problem of asynchronous sampling across lakes for species that have non-aquatic stages in their lifecycles sampling for key indicator species (ie. mayflies) was done within a short time span. In the final year there was some testing of invertebrate and fish sampling methods. Time trends in species diversity were addressed by: (1) comparing fish species lists to those of Harvey and Lee (1980); and (2) by repeating an invertebrate survey of the Chikanishing River (Curry and Powles 1991).

Funding for the project was obtained through a partnership with provincial (Natural Resources, Environment, Northern Development and Mines, Ontario Parks) and federal (Environment Canada) government agencies, industry (INCO, Falconbridge), educational institutions (Laurentian University), and non-government organizations (World Wildlife Fund).

STUDY SITE DESCRIPTION

Lithology

Detailed descriptions of the bedrock geology of Killarney Park (Figure 2) can be found in Cordiner (1974), Debicki (1982), and maps produced by the Ontario Department of Mines and Northern Affairs (Preliminary Map P.668 and P.669 Geological Series).

The Killarney Park watershed spans two geologic provinces on the southern fringe of the Canadian Shield. Most of the park consists of the Southern Province which is composed of sedimentary rock, primarily sandstone, that was deposited by a sea that existed 2 1/4 billion years ago. The Grenville Province, occuring as a narrow band in the southeastern part of the watershed, consists of sedimentary and igneous rock that was heated and twisted in the roots of a great mountain range. An important geologic fault called the Grenville Front crosses the southeastern portion of the park in a northeast direction. Between 1.8 and 1 billion years ago the Southern and Grenville Provinces pushed against each other along the fault. The rock of the Southern Province was pushed upwards into mountains thousands of metres in height. The eroded remains of those great mountains form the La Cloche Range. The highest point, Silver Peak (539 m), is currently only 362 m above the level of nearby Lake Huron. To the south and southeast of the mountains along the contact zone between the Grenville and Southern Provinces a large mass of granitic rock (18 in Figure 2) was intruded.

The La Cloche Mountains form an arc of high, erosion-resistant, orthoquartzite ridges (13, 15) that occupy about half (52.3%) the area of the park. Within the valleys between the mountains occur formations that are more prone to weathering. These exist in the lowlands of the McGregor Bay basin (9, 10, 11, 12, 17), in a narrow valley (14) extending from the Norway Lake area to Baie Fine, and a very narrow band between Nellie and Grace Lakes (14). To the north, northeast, and southeast of the La Cloche Mountains there are low, undulating, less erosion-resistant rocklands (8, 9, 10, 11, 12, 17, 22, 23).

Diabase and limestone, rocks with characteristically high weathering rates, exist within the watershed. A series of northwest trending diabase dykes (21) are scattered throughout the watershed, with the greatest number in the northeast portion. Diabase is a basic igneous rock with moderate levels of nutrients that often supports a rich growth of vegetation. Limestone deposits exist in the McGregor Bay basin and portions of the Howry Creek and Mahzenazing watersheds to the north and northeast of the quartzite ridges. Total area of the limestone-bearing Espanola Formation (10) within the watershed is 682.7 ha (1.2% of total watershed area).

Glaciers scratched and polished the bedrock over the entire park area, including the highest hills. Glacial erratics can be found on hilltops. Localized clay, sand and gravel deposits of glacial origin occur throughout the area, but most of the park consists of outcroppings of bedrock which are either bare or only thinly covered by soils. Where thicker soils exist, such as in the lowlands surrounding the ridges, they support a well-developed forest.

Figure 2. Lithology of Killarney Provincial Park

Waterbodies

Killarney Park encompasses an area of 48,110 ha (47,970 ha if exclude Baie Fine itself). Within the park there are 514 lakes and ponds ranging in size from 0.03 ha to 810.1 ha (median surface area 1.465 ha). The total area of these lakes is 6,890 ha (14.4% of park area). The park's watershed, subdivided into 8 major drainage basins, extends beyond the park boundary (Figure 3). The entire watershed has an area of 55,980 ha and contains 603 lakes and ponds (surface area range 0.03-810.1 ha; median surface area 1.5 ha; 226 lakes > 3 ha) with a total area of 7516 ha (13.4 % of watershed area).

Most of the waterbodies are accessible only by aircraft, boat and portage, or by hiking trail. Some lakes, in particular those located on the ridge heights, have no established access routes and must be reached by off-trail hiking. Only four lakes (Bell, Carlyle, George, Johnnie) can be reached by road.

Most lakes have no seasonal residences (ie. cottages, lodges) within their catchments, but many have primitive campsites that are used by wilderness enthusiasts canoeing or hiking in the park. Permanent buildings exist on 12 of the lakes. Relatively dense cottage development exists on the south shores of Carlyle and Johnnie lakes. The main park campground is at George Lake. Blue Mountain Lodge is located on Bell Lake and an outpost camp belonging to Killarney Mountain Lodge is situated on Johnnie Lake.

Beavers have a significant effect on the size and location of waterbodies throughout the park. They create ponds and lakes and raise water levels by constructing dams on streams and lake outlets. Impoundments created in this manner can and do frequently disappear when beavers abandon an area. For example, Otter Lake, a beaver impoundment, is shown on topographical maps as a lake but now exists only as a stream and meadow. Likewise, the waterline on the shore of Lumsden Lake is about 1 m above the current lake level showing the effect of recent movements by beavers.

A small number of human constructed dams also exist within the park. Dams were built in the park by humans for logging or to create waterways for boats. Pre-1930 maps show logging dams at Johnnie Lake, O.S.A. Lake, Balsam Lake, and on Kirk Creek, Chikanishing River, Howry Creek, and Mahzenazing River (MacDonald 1973). The Chikanishing River logging dam raised the water level of George Lake by as much as 10 feet over the present level. Under those circumstances Little Sheguiandah Lake would have been joined with George Lake. Dams that currently exist on some of the lakes (Threenarrows, Johnnie, Bell, George and Freeland) raise water levels for boating purposes. Freeland Lake is an impoundment of the Chikanishing River. Likewise, Threenarrows Lake was created by a dam on Kirk Creek that flooded a series of small lakes, marshes and streams. A decline in the water level of Threenarrows Lake, possibly related to the deterioration of the dam, has re-isolated one lake (Lake #59).

Figure 3. Major watersheds of Killarney Provincial Park

METHODS

Personnel Training

The survey was conducted by university students hired through the Environmental Youth Corps and Experience programs and the Cooperative Freshwater Ecology Unit. The students received 10 days training prior to the sampling season. Training sessions consisted of hands-on experience paddling canoes, operating motorboats, selecting sampling sites, setting fish sampling gear, sampling invertebrates, measuring dissolved oxygen and temperature profiles, mapping lake features and depth contours, and recording data. A field manual outlining survey procedures was given to each student. The first lake survey was supervised by the project biologist to ensure that practices conformed to methods outlined in the field manual. At the end of each lake survey the records and samples were inspected by the project biologist to ensure that proper techniques were being maintained.

Water Quality

During the winter of 1996 we sampled all of the named lakes in the park and as many of the unnamed waterbodies as time allowed (Appendix A). An interlaboratory QA/QC study of samples from 30 lakes was done as part of the sampling program (Appendix B). Later that year the headwater lakes to the north and east of the park were added to the biodiversity survey and on August 27, 1996 water samples were obtained from those lakes. The same day (August 27, 1996) we also sampled 6 lakes on Blue Ridge that were first sampled on August 20, 1973 (Beamish et al. 1975). These lakes were considered by Beamish et al. (1975) to be sensitive monitors of atmospheric inputs because they receive water exclusively from precipitation and have small watersheds underlain by quartzite with very little soil cover. The headwater lakes at the northwest corner of the park were added to the biodiversity survey in 1997 and water samples were obtained from them on August 19, 1997 (Appendix C). Artist Lake was sampled on October 12, 1997.

Fish

Each lake was visited once during the summer (May - September) to determine species presence. An exception was Freeland Lake which was resampled as a training exercise for the 1997 field crews. If all gears were not set during the original surveys lakes were revisited to complete the sampling effort.

Sampling effort was 3 nights on lakes > 20 ha and 1 night on lakes < 20 ha (Table 1). The amount of gear fished each night was the same regardless of lake size. This design resulted in the smaller lakes being sampled more intensively relative to surface area than the larger lakes (Table 2). Gears used included gill nets, trap nets, plexiglass traps (Casselman and Harvey 1973) and baited wire-mesh Gee minnow traps (Appendix D). Most nets and traps were set to fish overnight, checked the following day and moved to a new location on the lake.

Table 1. Summary of fishing effort (number of sets). Each unit of effort represents one night of fishing. "Short" indicates daytime sets of 2-4 hours that were done to avoid killing reintroduced and native lake trout or other gamefish. The wire-mesh minnow traps were set in pairs and each unit of effort is one pair. Crayfish effort indicates the total number of traps. Lakes where species lists were supplemented by the results from recent 2-hour daytime gillnet sets done as part of a lake trout - cisco interaction study are indicated by (#).

Hake	Dates surveyed	Trapnet	Gillnet	Plexiglass	Wire-mesh	Crayfish
Acid	May 30-31 / 95	1	2	1	10	18
Amikogaming	June 6-7 / 96	2	2	2	10	18
Artist	July 2-3 / 97	0	0	2	10	18
A.Y. Jackson	May 23-24 / 95	2	0	1	10	18
Baisam	July 24-27 / 95	6	4 + 2 short	5	30	54
Beaver	July 16-17/95	2	2	2	10	18
Bell	July 4-7 / 95	6	2 short (#)	6	30	54
Betty	Aug 17-18/96	2	2	2	10	18
Billy	Jul 30-Aug 2 / 96	6	6	6	30	54
Bizhiw	July 6-7 / 96	0	ì	0	3	6
Bodina	July 17-20 / 97	6	6	6	30	54
Boundary	June 4-7 / 96	6	4	6	20	54
	June 17-19 / 97	0	0	0	0	108
Bunnyrabbit	July 22-23 / 96	0	1	0	3	6
Burke	May 28-29 / 95	1	1	1	9	18
Canis	July 1-4/97	6	6	6	30	54
Carlyle	Jun 19-22, 26 / 95	6	10 short	3	27	54
Casson	June 4-5 / 97	0	1	0	3	6
Cat	July 2-5 / 96	6	2	6	30	54
Cave	July 1-2/97	2	2	2	10	81
Chain	July 25-26 / 95	0	2	2	10	18
Clearsilver	August 22-25 / 95	6	6	6	30	54
Cranberry Bog	August 16-17/95	0	1	1	10	18
	June 16-17 / 97	0	0	0	10	0
Crater East	July 2-3 / 96	0	1	0	3	6
Crater West	July 3-4 / 96	0	1	0	3	6
Cuckoo	August 14-15 / 96	2	2	2	10	18
David	June 8-11 / 96	6	6	6	30	54

Table 1 (cont.). Summary of fishing effort (number of sets). Each unit of effort represents one night of fishing.

"Short" indicates daytime sets of 2-4 hours that were done to avoid killing reintroduced and native lake trout or other gamefish. The wire-mesh minnow traps were set in pairs and each unit of effort is one pair. Crayfish effort indicates the total number of traps. Lakes where species lists were supplemented by the results from recent 2-hour daytime gillnet sets done as part of a lake trout - cisco interaction study are indicated by (#).

Lake	Date surveyed	Trapnet	Gillnet	Plexiglass	Wire-mesh	Crayfish
					A STATE OF THE STA	7.7
Deacon	August 1-4 / 95	6	6	3	30	54
de Lamorandiere	May 29-30 / 95	1	2	1	10	18
East Howry	Aug 13-14, 15-16/96	4	4	4	20	36
Fish	June 18-21 / 96	6	4	6	30	54
Fox	Aug 1-4 / 95	6	6	3	30	54
Frank	Aug 17-18 / 95	l	2	1	9	18
Freeland	June 12-15 / 95	6	4	2	24	54
	May 9-12 / 97	6	6	6	30	54
Gail	June 7-8 / 96	2	2	2	20	18
Gem	June 21-24 / 96	6	4	6	30	54
George	June 12-15 / 95	6	0 (#)	4	30	54
Goose	June 20-21 / 96	0	0	1	5	6
	May 23-24 / 97	0	1	0	0	0
Goschen	Aug 12-13 / 97	0	1	0	3	6
Grace	Aug 1-4/97	6	6	6	30	54
Great Mountain	June 8-11/96	6	6	6	30	54
Grey	Jul 30 -Aug1 / 96	6	6	6	30	54
Grow	June 18-19 / 96	2	2	2	10	18
Hanwood	July 18-21 / 96	6	6	3	30	54
Натту	Aug 18-21 / 95	6	6	3	27	54
Heaven	July 18-19/96	0	1	0	3	6
Helen	July 10-13 / 95	6	2 + 4 short	6	30	54
	June 21-22 / 97	0	0	0	0	54
Hemlock	July 23-24 / 96	0	1	0	2	6
Howry	June 17-20 / 96	6	6	6	30	54
Ishmacl	July 4-7 / 95	6	4 + 2 short	6	30	54
	June 22-23 / 97	0	0	0	0	54

Table 1 (cont.). Summary of fishing effort (number of sets). Each unit of effort represents one night of fishing.

"Short" indicates daytime sets of 2-4 hours that were done to avoid killing reintroduced and native lake trout or other gamefish. The wire-mesh minnow traps were set in pairs and each unit of effort is one pair. Crayfish effort indicates the total number of traps. Lakes where species lists were supplemented by the results from recent 2-hour daytime gillnet sets done as part of a lake trout - cisco interaction study are indicated by (#).

Lake	Dates surveyed	Trapnet	Gillaet	Plexiglass	Wire-mesh	Crayfish
Johnnie	July 10-13 / 95	6	6 short (#)	6	30	54
Kakakise	Jun 19-22, 27 / 95	6	2 + 4 short (#)	6	39	54
Kidney	June 13-14/96	0	1	0	3	6
Killamey	May 15-18/95	6	6	3	30	54
Lake of the Woods	Sept 14-15 / 96	0	1	0	3	6
Leech	June 8-10 / 97	6	6	6	30	54
Little Bell	July 24-25 / 95	0	2	2	10	18
			-	0		
Little Leech	June 8-9 / 97	0	1		3	6
Little Mink	July 8-9 / 97	2	2	2	10	18
Little Mountain	June 4-7 / 96	6	6	6	30	36
Little Sheguiandah	May 23-24 / 95	2	2	1	10	42
Little Superior	July 15-16/97	0	1	0	6	6
Log Boom	June 28-29 / 95	2	2 short	1	10	18
Low	July 7-10 / 95	6	2 + 4 short	6	30	54
	June 20-21 / 97	0	0	0	0	54
Lumsden	June 1-4 / 95	6	6	6	30	54
Mink	June 3-7 / 97	6	6	6	30	54
Muriel	July 4-7 / 97	6	6	6	30	54
Митау	June 3-6 / 97	6	6	6	30	54
Nellie/Carmichael	June 17-20 / 97	6	6	6	30	54
Norway	June 8-11 / 96	6	6	6	30	54
O,S.A.	May 15-18/95	6	5	3	30	54
Partridge	June 4-5 / 96	2	2	2	10	18
Patten	July 8-9 / 96	2	2	2	10	18
Pearl	July 7-8 / 96	0	ı	0	3	6
Peter	July 21-27 / 97	6	0 (#)	6	30	54
Pike	Aug 15-16/95	2	2	1	9	18

Table 1 (cont.). Summary of fishing effort (number of sets). Each unit of effort represents one night of fishing.

"Short" indicates daytime sets of 2-4 hours that were done to avoid killing reintroduced and native lake trout or other gamefish. The wire-mesh minnow traps were set in pairs and each unit of effort is one pair. Crayfish effort indicates the total number of traps. Lakes where species lists were supplemented by the results from recent 2-hour daytime gillnet sets done as part of a lake trout - cisco interaction study are indicated by (#).

Lake	Dates surveyed	Trepnet	Gillset	Plexiglass	Wire-mesh	Crayfish
Proulx	July 16-17 / 97	0	The second second	0	6	6
Quartzite	August 2-3 / 97	0	1	0	6	6
Rocky	June 21-26 / 96	6	6	6	30	54
		1	1	1	10	18
Roque	May 27-28 / 95					
Round Otter	June 21-24 / 96	6	6	6	30	54
RuthRoy	June 26-29 / 95	6	6	6	30	54
Sandy	June 5-6 / 96	2	2	2	10	18
Sealey's	Aug 8-9 / 95	1	1	1	10	18
Shingwak	July 17-18 / 97	0	1	0	6	6
Silver	July 16-17 / 96	0	- I	0	3	6
Solomon	May 26-27 / 95	1	2	1	10	18
Spark	July 5-6 / 96	0	1	0	3	6
Teardrop	June 27-28 / 96	0	l short	0	3	6
Terry	June 7-8 / 95	2	2 short	2	10	18
Threenarrows	July 19-22 / 96	6	6	6	28	54
Topaz	June 8-9 / 96	0	1	0	3	6
TriLakes North	Aug 17-18 / 96	2	2	2	9	18
TriLakes SouthEast	Aug 15-16/96	2	2	2	9	18
TriLakes SouthWest	Aug 14-15 / 96	2	2	2	10	- 81
Turbid	Aug 6-7 / 96	2	2	2	10	18
Turtleback	June 20-21 / 97	2	2	2	10	18
Van	July 22-23 / 96	2	2	1	10	18
Van Winkle	July 6-9 / 96	6	6	6	30	54
Wagon Road	May 29-30 / 95	2	0	1	10	18
	June 17-18 / 97	0	1	0	0	0
Whiskeyjack	July 25-26 / 96	0	1	0	2	6
York	July 1-4 / 96	6	6	6	30	54

Table 1 (cont.). Summary of fishing effort (number of sets). Each unit of effort represents one night of fishing.

"Short" indicates daytime sets of 2-4 hours that were done to avoid killing reintroduced and native lake trout or other gamefish. The wire-mesh minnow traps were set in pairs and each unit of effort is one pair. Crayfish effort indicates the total number of traps. Lakes where species lists were supplemented by the results from recent 2-hour daytime gillnet sets done as part of a lake trout - cisco interaction study are indicated by (#).

Lake	Dates surveyed	Trapaet	Gillnet	Plexiglass	Wire-mesh	Crayfish
W6	Aug 15-16 / 97	0	ı	0	3	6
#7	Aug 14-15 / 97	0	1	0	3	6
#9	Aug 17-18/97	0	1	0	3	6
#24	Aug 3-4 / 97	0	J	0	6	6
#25	Aug 4-5 / 97	0	0	0	6	6
#27	Aug 1-2 / 97	0	1	0	6	6
#28	July 31 - Aug 1 / 97	0	1	0	6	6
#29	July 30-31 / 97	0	1	0	6	6
#30	July 29-30 / 97	0	1	0	6	6
#37A	July 6-7 / 96	2	2	2	10	18
#45	Aug 13-14/97	0	1	0	3	6
N59	July 16-19 / 96	6	6	6	30	54
#64	July 19-20 / 97	0	1	0	6	6
#65	July 20-21 / 97	0	1	0	6	6
#66	July 21-22 / 97	0	1	0	6	6
#69	May 25-26 / 95	1	0	l	8	12
#74	July 15-16/97	2	2	2	10	18
#76	July 6-7 / 97	0	1	0	6	6

Table 2. Summary of total effort (number of hours) and hours effort per hectare lake surface area.

TEN AND		Trapnet		Gillnet		Plexigiass		Wire-mesh	
Linke	Area (ha)	total hrs.	brs/ba	total bra	hrs/ha	total hrs	hrs/ha	total hrs	hrs/ha
Acid	19.6	19.27	0,98	31.48	1.6	17.08	0.87	173.45	8.8
Amikogaming	17.8	32.57	1.82	30.23	1.69	35.92	2.01	169.03	9,44
Artist	26.0	0	0	0	0	43.85	1.69	215.63	8.29
A.Y. Jackson	6.5	38.82	5.97	0	0	16,85	2.59	210.38	32.37
Balsam	266.9	133.48	0,48	116.3	0.42	101.68	0.36	643.27	2.3
Beaver	16.2	43.2	2.67	37.53	2.32	44.63	2.75	214.1	13.22
Bell	347.4	133.2	0.37	5.42	0.02	138.13	0.39	674.83	1.89
Betty	19.1	47.62	2.49	33,17	1.74	47,53	2.49	235.23	12.32
Billy	24.1	127.32	5.28	100,37	4.16	127.6	5.29	649,02	26.93
Bizhiw	2.1	0	0	21.1	10.05	0	0	64.7	30.81
Bodina	35.2	120.90	3,43	59.60	1.69	133,22	3.78	706.12	20.06
Boundary	93.3	134.02	1.42	57.15	0.61	134.52	1.43	636.53	6.74
Bunnyrabbit	12.7	0	0	16	1.26	0	0	46,33	3.65
Burke	8.4	20.78	2.97	19.12	2.73	20.38	2.91	186.4	26.63
Canis	27.4	136,58	4.98	91.23	3.33	131.28	4.79	693.85	25.32
Cartyle	156.7	131.8	0.78	23.63	0.14	68.18	0.4	578.22	3.43
Casson	15.0	0	0	17.53	1.17	0	0	62.57	4.17
Cat	46.4	125.32	2.7	32	0.69	127.62	13.8	640.52	13.8
Cave	12.4	47.63	3.84	36.52	2.95	42.83	3,45	250.67	20.22
Chain	10.9	0	0	45.5	4.17	44.05	4.04	225.81	20.72
Clearsilver	30.9	141.47	4.58	140.15	4,54	140.71	4.55	702.99	22.75
Cranberry Bog	18.5	0	0	23.68	1.28	23.85	1.29	241.78	13.07
1995 1997		0	0	0	0	0	0	184.33	9.96
Crater East	2.2	0	0	23.08	10.49	0	0	70.23	31.92
Crater West	0.8	0	0	21.8	27.25	0	0	65,83	82.29
Cuckoo	24.6	40.08	1.62	34.75	1.4	40.18	1.62	196.42	7.92
David	406.3	130.92	0.31	68.42	0.16	129,38	0.3	645.9	1.52
Deacon	36.9	114.8	3.12	137.38	3,73	63.15	1.72	620.03	16.85
de Lamorandiere	5.9	18.13	3.07	35,42	6	18.43	3.12	186.52	31.61
East Howry	71.7	86.45	1.21	55,42	0.77	86.18	1.2	430.67	6.01
Fish	115.4	137.65	1.18	42.13	0.36	137.33	1.18	690.57	5.93

Table 2 (cont.). Summary of total effort (number of hours) and hours effort per hectare lake surface area.

		Trapnet 15		Gillnet		Plexiglass		Wire-mesh	
Lake	Area (ha)	total hrs.	hra/ha	total hrs.	hrs/ha	total hrs	brs/hs	total hrs	hrs/ha
Fox	42.3	125.22	2.96	119.17	2.82	62.05	1,47	637.38	15.07
Frank	15,6	22.18	1.42	37.03	2.37	16.53	1.06	196.97	12.63
Freeland	47.7	131.48	2.76	104.92	2.2	46.8	0.98	554.55	11.63
1995 1997		138.7	2.91	70.43	1.48	145.32	3.05	734.45	15,4
Galil	20.9	36.58	1.75	33.88	1.62	37.5	1.79	183,05	8.76
Gem	30.7	134.33	4.38	71.5	2.33	147.73	4.81	733.28	23.89
George	188.5	134.3	0.71	0	0	94.08	0.5	689.33	3.66
Goose	10.1	0	0	0	0	29.48	2,92	143,08	14.17
1996 1997		0	0	11.67	1.16	0	0	0	0
Goschen	24.1	0	0	16.85	0.7	0	0	53.78	2.23
Grace	47.2	141.12	2.99	113.75	2.41	143.43	3.04	696.6	14.76
Great Mountain	198.3	134.17	0.68	86.33	0.44	133,55	0,67	687.05	3.46
Grey	31.8	135.87	4.27	89.03	2.8	118,05	3.71	654.08	20.57
Grow	13.1	47.13	3.6	40.23	3.07	48.18	3.68	233	17.79
Hanwood	32	132.2	4.13	77.8	2.43	65.9	2.06	653.32	20.42
Натту	133.6	117.43	0.88	75.5	0,57	55.03	0.41	524.03	3.92
Heaven	1.7	0	0	22.68	13.34	0	0	68.83	40.49
Helen	82.6	128.47	1.56	46,33	0.56	129.5	1.57	655.12	7.93
Hemlock	3.3	0	0	19.42	5.88	0	0	38.83	11.77
Ночту	118.1	122.58	1.04	96.18	18,0	125.17	1.06	603.47	5.11
Ishmael	72.8	138.93	1.91	90.38	1.24	135.2	1.86	676.68	9.3
Johnnie	342.3	129.65	0.38	13.02	0.04	137.18	0.4	670.75	1.96
Kakakise	112.6	130.42	1.16	51.88	0.46	127,93	1.14	868	7.71
Kidney	2.9	0	0	16.75	5.78	0	0	50.2	17.31
Killamey	326.5	121.95	0.37	89,88	0.28	56.3	0.17	594,4	1.82
Lake of the Woods	9.7	0	0	23.75	2.45	0	0	70.92	7.31
Leech	92.2	139.12	1.51	75.07	0.81	139.93	1.52	678.23	7.36
Little Bell	21.1	0	0	32.17	1.52	34.38	1.63	173.68	8.23
Little Leech	9.8	0	0	19.53	1.99	0	0	62.2	6.35
Little Mink	18.7	53.57	2.86	32.08	1.72	52.37	2,80	250.58	13,40

Table 2 (cont.). Summary of total effort (number of hours) and hours effort per hectare lake surface area.

	100	Trapnet		Gil	Gillnet		Plexiglans		Wire-mesh	
Lake	Area (ha)	total hrs.	hra/ha	-total hrs.	hrs/ba	total hre	hra/ha	total hrs	hrs/ha	
Little Mountain	23.6	116.25	4.93	126.55	5.36	111.92	4.74	617.6	26.17	
Little Sheguiandah	4,5	49.78	11.06	40,18	8.93	27,92	6.2	259.1	57.58	
Little Superior	13.9	0	0	12.00	0,86	0	0	91.57	6.59	
Log Boom	6,9	49.05	7.11	4.38	0.63	23.78	3,45	223.22	32.35	
Low	33.8	129.55	3.83	44.88	1.33	127.93	3.78	637.67	18.87	
Lumsden	23.8	133.2	5.6	87.25	3.67	126.78	5.33	201.53	8.47	
Mink	30.5	143.70	4.71	81,88	2.68	132.62	4.35	688.65	22.58	
Muriel	31.7	142.87	4.51	69.75	2.20	145.83	4.60	719.37	22.69	
Миггау	93.0	132.20	1.42	101.02	1.09	131.80	1.42	657.02	7.06	
Nellie/Carmicahel	260.5	123.58	0.47	99.43	0.38	116.25	0.45	605.45	2.32	
Norway	63.3	125.42	1.98	125.37	1.98	125.33	1.98	638.65	10.09	
O.S.A.	278.9	125.25	0.45	59,62	0.21	70.65	0.25	609.05	2.18	
Partridge	11	28.83	2.62	35.17	3.2	34.5	3.14	162.92	14.81	
Patten	11.9	56.02	4.71	43.75	3.68	57.52	4.83	267.45	22.47	
Pearl	2.6	0	0	22.75	8.75	0	0	70.08	26.95	
Peter	132.4	144.52	1.09	0	0	134.15	1.01	640.13	4.83	
Pike	32	40.52	1.26	35.22	1,1	18.43	0.58	177.3	5.54	
Proulx	12.0	0	0	15.98	1.33	0	0	135.78	11.32	
Quartzite	15.7	0	0	12.82	0.82	0	0	112.68	7.18	
Rocky	42.9	110.53	2.58	70.1	1.63	111.33	2.6	549.62	12.81	
Roque	2.8	19.6	7	17.82	6.36	20.52	7.32	202.62	72.36	
Round Otter	20.4	141.68	6.95	108.48	5.32	144.48	7.08	711.1	34.86	
RuthRoy	54.5	133.35	2.45	138.25	2.54	139.68	2.56	667	12.24	
Sandy	21.6	38.58	1.79	33.03	1.53	41.02	1.9	200.23	9.27	
Sealey's	9.4	22.6	2.4	21.68	2.31	21.7	2.31	217.85	23.18	
Shingwak	5.3	0	0	14.42	2.72	0	0	101.93	19.23	
Silver	6.2	0	0	19.07	3.08	0	0	57.35	9.25	
Solomon	8.3	18.07	2,18	34.91	4.21	19.95	2.4	193.78	23.3	
Spark	12	0	0	23.78	1.98	0	0	71.05	5.92	
Teardrop	3.4	0	0	4.42	1.3	0	0	45.18	13.29	
Тепту	11.5	43.97	3.82	5.85	0.51	45.08	3.92	230.3	20.03	

Table 2 (cont.). Summary of total effort (number of hours) and hours effort per hectare lake surface area.

		Trapset		Gillnet		Plexiglars		Wire-mesh	
Lake	Area (ha)	total hrs.	brs/bs	total hrs.	hrs/ha	total hra	hrs/hs	total hrs	brs/ha
Threenarrows	810.1	135.23	0.17	76.15	0.09	128.85	0.16	600.15	0.74
Topaz	4.7	0	0	20.17	4.29	0	0	60,2	12,81
TriLakes N	12.8	45,78	3,58	34,95	2.73	47.6	3.72	179.9	14,05
TriLakes SE	17.5	37.42	2.15	27.97	1.6	37.63	2.15	170,58	9.75
TriLakes SW	10.4	46,42	4,46	23.98	2.31	46.38	4,46	227.68	21,89
Turbid	18.2	35	1.92	35.25	1.94	41.97	2.31	214.35	11.78
Turtleback	5,4	43.60	8.07	37.20	6,89	43,37	8.03	205,07	37,98
Van	14,7	57.75	3,93	40.02	2.72	28.6	1.95	281.45	19.15
Van Winkle	85.2	137.13	1.61	97.45	1.14	142.23	1.67	711.17	8,35
Wagon Road	5.2	37.57	7.23	0	0	24.5	4.71	199.08	38.28
1995 1997		0	0	12.85	2,47	0	0	0	0
Whiskeyjack	12.8	0	0	22.4	1.75	0	0	45	3.52
York	39,1	138.37	3.54	75.33	1,93	137.2	3.51	670.28	17,14
#6	2,4	0	0	18.42	7.68	0	0	55.55	23,15
#7	2,8	0	0	13.90	4.96	0	0	43.62	15,58
#9	1.3	0	0	0	0	0	0	61.68	47.45
#24	3.0	0	0	14.70	4.90	0	0	129.68	43.23
#25	1.2	0	0	0	0	0	0	121.05	100.88
#27	3.1	0	0	17.38	5.61	0	0	132.82	42.85
#28	2.5	0	0	12.87	5,15	0	0	124.75	49.90
#29	2.4	0	0	15.02	6.26	0	0	115.65	48.18
#30	2.5	0	0	16.00	6.40	0	0	100.97	40.39
#37A	17.6	50.88	2.89	50.58	2.87	52.53	2.98	255.75	14.53
#45	4,4	0	0	14.93	3.39	0	. 0	53.20	12.09
#59	48.5	139.5	2.88	103,95	2.14	144	2.97	705.78	14.55
#64	3.6	0	0	16.52	4.59	0	0	125.73	34.93
#65	2.6	0	0	17.92	6.89	0	0	127.62	49.08
#66	2.0	0	0	17.58	8.79	0	0	134.03	67.02
#69	2.2	19.26	8.75	0	0	19.17	8.71	156,88	71.31
#74	11.8	32.73	2.77	28.67	2.43	49.8	4.22	251.7	21.33
#76	8,7	0	0	14.47	1.66	0	0	109.25	12.56

Sampling effort in lakes accessed by hiking was determined by the amount of gear that could be carried by a 2-person field crew. The gear that fit into 2 backpacks consisted of an inflatable raft, one multi-panel gill net, 6 wire-mesh minnow traps, 1 crayfish trapline (6 traps), a dissolved oxygen meter, a Secchi disk, a graph recording depth sounder, a 12 volt wet-cell battery, a sweepnet, a measuring board, two lifejackets, two paddles, an anchor line, and miscellaneous equipment for sorting and preserving biological samples.

Multi-panel gill nets (15.2 m x 1.9 m panels with stretched mesh sizes of 25, 38, 51, 64, and 76 mm) were usually set in the evening and lifted the following morning. Some lakes that contain reintroduced or remnant lake trout populations were not sampled in the hypolimnion with gill nets (eg. George, Bell, Johnnie, Kakakise). Instead, we augmented our species lists by setting gill nets only in the epilimnion or by including the results from non-lethal gill net sampling that was done within the past 4 years to assess the lake trout populations in those lakes. In all other lakes gillnets were set overnight until cumulative sportfish mortality reached 10 fish. Thereafter short-duration (2-4 hour) daytime gillnet sets were used to capture species not susceptible to the other fishing gears.

Gillnets were tied to shore and extended out to deeper water, straddling the thermocline. Water depths with dissolved oxygen < 4 mg/L were avoided. In most lakes two gill nets were set each night, but in the smallest lakes with limited areas of open water only one gill net was used. The nets were alternated with respect to the mesh size set to shore. One was set with 25 mm mesh to shore, the other with 76 mm mesh to shore. If only one gill net was used, it was set with 25 mm mesh to shore.

Two 4-foot small mesh trapnets were set each night in the littoral zone, usually in water depths < 3 m. One or two plexiglass traps were set each night in water < 1m deep. Ten pairs of wiremesh Gee minnow traps baited with dry dog kibble were set to fish overnight. At each sampling location two traps were set adjacent to each other, one at 0.5 m depth and one at 1.5 m depth. Each pair of traps was a unit of effort. On lakes with more than one night of sampling, 5 pairs of minnow traps remained at the same location each night and the other 5 pairs were moved to different locations each night.

Fish catch processing was as follows. All fish were identified to species and separated by gear type and mesh size. The first 200 fish of each species for each gear type/mesh size were measured for fork length. A representative sample of any species not readily identifiable by field staff was preserved in 70% alcohol. Species identification was done in the laboratory using the keys in Scott and Crossman (1973). Taxonomic identification was confirmed by Marty Rouse, Department of Ichthyology, Royal Ontario Museum, Toronto.

Testing of Nordic Standard

Multi-mesh gillnets (Degerman et al. 1988; Nyberg and Degerman 1988) have been adopted by Scandinavia as the standard for assessing the composition and relative abundance of fish communities. Each gillnet is 30 m long and consists of 12 mesh sizes (5, 6.25, 8, 10, 12.5, 15.5, 19.5, 24, 29, 35, 43, 55 mm), with each mesh 2.5 m long and 1.5 m high. The method involves setting the nets overnight (6 pm to 8 am) during summer thermal stratification. Orientation to shore and location on lake are both random, but the effort is stratified by depth and the number of sets is based upon lake size and depth. The effectiveness of the Nordic Standard for assessing the fish species diversity of our waters was tested during late September 1997 in Low Lake (24 sets) and Helen Lake (32 sets).

Zooplankton

Lakes not included in the study by Locke et al. (1994) were sampled for zooplankton during our survey. A sampling technique similar to Locke et al (1994) was used. Vertical net hauls from 1 m above the sediments were used to collect one daytime sample at the deepest point in each lake. Sampling gear was a conical 80 micron mesh zooplankton net with a 29.5 cm diameter mouth and detachable straining bucket. Samples were preserved in 70% alcohol. A taxonomic list for the Teardrop Lake sample was produced by Norm Yan, Ontario Ministry of the Environment, Dorset. All other samples are being stored for future identification.

The same sampling gear was used for Mysis as for zooplankton. One sample was collected at each of 6 deep basin sites during the night. Collections were made in lakes with maximum depth > 15 m and pH > 5.5. The lakes sampled for Mysis were Balsam, Gem, Helen, Howry, Ishmael, Low, Teardrop, Threenarrows, Van Winkle, and York

Macroinvertebrates

Qualitative macroinvertebrate collections were made by sweepnetting nearshore areas and inspecting rocks and wood debris for 6 man-hours in each lake in 1995 and 4 man-hours in each lake in 1996 and 1997. A triangular (9 inch) #30 mesh sweep net was used. Sampling was confined to depths < 1 m. All substrate types present in a lake (eg. detritus, rock, macrophytes, mud) were sampled. Approximately equal periods of time were spent in each habitat type. Specimens were preserved in 70% alcohol. Amphipods were identified using the key in Pennak (1978). Mayflies were identified using the keys in Merritt and Cummins (1996) and Thorp and Covich (1991). The mayfly identifications were confirmed by Ron Griffiths, Aquatic Ecostudies, Dutton. Dysticids were submitted for identification to Yves Alarie (Laurentian University). Odonates identified by Kyle Hawes have been submitted to Raymond Hutchinson for confirmation.

Mayflies

Two mayfly species, Stenonema femoratum and Stenacron interpunctatum, show potential as early indicators of biological recovery (Jim Carbone pers. comm.). These species are relatively acid-sensitive, live in easily sampled shoreline habitats, and are readily identified in the field by survey crews. They commonly occur on clean, wave-swept shorelines of lakes where they cling to rocks and other objects (Edmunds et al. 1976). In May of 1996 and 1997 an effort was made to obtain samples of Stenonema femoratum and Stenacron interpunctatum from 100 lakes (75 in 1996 and 25 in 1997). The sampling was done during May to ensure that sampling occured prior to the emergence period. The field crews paddled along the shoreline of each lake and upon locating rocky substrate conducted a search by turning over the rocks. Other mayfly species encountered in this manner were also collected. The examination of rocks was done for 1/2 hour on each lake and it was assumed that Stenonema and Stenacron were absent if no specimens were found in that time.

The mayflies were preserved in 70% alcohol and later identified using the keys in Merritt and Cummins (1996) and Thorp and Covich (1991). The identifications were confirmed by Ron Griffiths, Aquatic Ecostudies, Dutton.

Chikanishing River Invertebrates

During the winter of 1995-1996 the Chikanishing River was sampled for invertebrates by repeating the sites and methods used in 1985-1986 (Curry and Powles 1991). Surber samples were obtained from three sites: C1 10 m downstream of George Lake; C2 1000 m downstream of George Lake; and C3 1800 m downstream of George Lake. Site C3 is located about 40 m downstream from the highway bridge. Three surber samples were taken at each site on December 7, January 18, February 23, and March 20. Additional sampling with sweepnets was done on December 7 to collect mayfly species not susceptible to the surbers. A sweepnet sample was also obtained upstream of the highway bridge during May 1997. Species identifications were done by Ron Griffiths. Water samples were obtained from all three sites on December 5, 1995 and February 23, 1996.

Crayfish

Crayfish sampling was a slightly modified version of the method outlined by David et al (1994). Sampling was stratified by habitat type. Every night a crayfish trapline was set in each of three habitat types (1-rocky; 2-detritus; 3-macrophyte or silt or sand). If all habitat types were not present in a lake, traplines were placed in available habitats.

Crayfish were collected with a modified wire-mesh minnow trap baited with a perforated (eight 1/4" holes) plastic film canister filled with fish-flavour canned cat food. The funnel entrance was enlarged to 5 cm to allow large crayfish to enter. A trapline consisted of 6 traps fixed to a rope at 3 m intervals. The traplines were set perpendicular to shore, but on very steeply

sloping bottoms they were set diagonal to shore. The traps were numbered consecutively (1-6) from shallow to deep. The line was tied to shore so that the first trap was in water 0.5 m deep. The depth of the trap furthest from shore was recorded.

The substrate at each site was described and recorded as approximate percentages of each substrate type visible from the surface. Thus, in lakes with low water transparency only the nearshore substrate was described. However, at most shallow sampling sites and in lakes with very clear water the substrate surrounding the deepest traps could be seen and included in the description. The percentages for macrophyte cover and submerged logs were estimated separately from substrate type.

Crayfish traps were set to fish overnight and were moved daily. The catch in each trap was counted and identified to species using the keys in Crocker and Barr (1968). A sample of 4 crayfish of each species present in a lake was preserved in 70% alcohol.

By the latter part of 1996 it had become obvious that sampling with baited traps was not an effective method of assessing crayfish species diversity. In five lakes (Carlyle, Fish, Freeland, Harry, Pike) Orconectes had been captured while sweepnetting for macrobenthos, but not in the baited traplines. In addition, we did not capture any crayfish in some lakes that had what appeared to be suitable physical habitat and good water quality (eg. Helen, Low). Therefore, in 1997 the species list was supplemented by visually searching nearshore areas for crayfish. Large rocks in the water adjacent to shore were turned over and the exposed crayfish captured by hand or in a small dipnet. On each lake or stream sampling was done at multiple locations for a total of 1/2 hour. These visual searches were done in 48 streams and 75 lakes, including many that had been surveyed in previous years. On three of the lakes (Helen, Low, Ishmael), sampling with baited traps was repeated concomittant with the visual searches. Additional traps were also set in Boundary Lake in an attempt to locate the route of colonization for Orconectes virilis.

Crayfish captured in fish sampling gear were also identified, but in only one case (Orconectes virilis captured in gillnet at 15 m depth in Low Lake) was a population discovered in this manner and not by any other sampling method (ie. baited trap, dipnetting, visual search).

Leeches

In 1996 leeches were collected using the method of Bendell and McNicol (1991). Funnel traps were made from 1.5 L glass mason jars with plastic funnels (1.1 cm diameter opening) fitted in the mouth of each jar. The jars were baited with 50 g of beef liver, filled with water, and placed on their sides in the littoral zone (depth <= 0.5 m) at 5 separate locations. In lakes with more than one night of sampling the traps were moved to different locations each night. The trapped leeches were narcotized with soda water and preserved in 70% ethanol for future identification.

Within-lake Invertebrate Spatial Distributions

Water quality in George Lake (pH 5.8) is currently adequate for <u>Stenonema femoratum</u> and <u>Stenacron interpunctatum</u>. The presence of both species was confirmed in 1995 by Jim Carbone (pers. comm.). However, neither species was captured during the 1996 mayfly survey. George Lake was subsequently revisited by Ed Snucins in the company of one of the field crew. They succeeded in collecting specimens of both species adjacent to the Little Sheguiandah Lake outlet. These results suggested that the distribution of these mayflies within the lake might be limited, possibly due to recent recolonization.

As a result of this difficulty in finding the mayflies in George Lake, we decided to determine if the distribution of benthic invertebrates within a lake affected our ability to detect their presence. During 1997 we mapped in detail the distribution of four species of acid-sensitive invertebrates, including a crayfish (Orconectes propinquus), two species of mayflies (Stenonema femoratum, Stenacron interpunctatum), and one amphipod species (Hyallela azteca) in two lakes. One was a recovering acidified lake (George Lake; 1980 pH 5.0, 1996 pH 5.8; 189 ha) and the other a circumneutral reference lake that was never acidified (Low Lake; 1996 pH 7.2; 34 ha). We also mapped the distribution of one acid-tolerant crayfish species (Cambarus robustus).

We sampled every area of shoreline that we had classified as containing suitable habitat. All coarse rocky substrate adjacent to shore (water <50-60 cm deep) was searched for crayfish and mayflies. The crayfish were caught by hand or with a small dipnet. Mayflies clinging to rocks were removed with the aid of forceps. The number of coarse substrate sampling sites was 23 in the reference lake (Low Lake) and 113 in the recovery lake (George Lake).

Amphipods we captured by sweepnetting below overhanging shoreline vegetation, in aquatic vegetation and over fine and moderately coarse nearshore substrates. Long continuous patches of habitat were sampled every 50 m for amphipods. Amphipod sampling was done at 37 sites in Low Lake and 68 sites in George Lake.

Amphibians, Reptiles, Birds, Mammals

Field crews noted any aquatic or fish-eating amphibians, reptiles, birds and mammals that were seen on or near the lakes or captured in fish sampling gear. In 1996 Don McNicol of Environment Canada conducted a waterfowl survey by helicopter. Tadpoles that were captured in the fishing gear during 1996 and 1997 were preserved in 70% ethanol for future identification.

Water Temperature, Dissolved Oxygen and Secchi Depth

At the beginning of each survey, the temperature and dissolved oxygen profiles were obtained at the deepest point in the lake using a YSI dissolved oxygen / temperature meter. A Secchi depth (disc diameter 20.5 cm) was also measured in each lake and the water colour was noted. Dissolved oxygen levels under winter ice were obtained during the 1996 water sampling program.

Dissolved oxygen and temperature profiles for 86 of the lakes were obtained during a synoptic thermal survey at the time of maximum thermal stratification from August 25-September 1, 1997. Oxygen and temperature readings were taken at 1 m intervals beginning at the surface except in lakes with maximum depth < 8 m measurements were done every 0.5 m. The thermocline was defined as a change of > 2° C per metre (Dodge et al. 1987). Profiles were obtained using YSI dissolved oxygen / temperature meters. Three meters were used, each with a different length of cable (15m, 30m, 60m). On 13 lakes readings could not be taken over the full depth range because the maximum depth of the lakes exceeded the length of cable. The accuracy of temperature readings by the meters was checked, both before and after the survey, against a standard thermometer with manufacturers calibration certificate traceable to N.B.S.. The meter readings were always within 0.5°C of the standard thermometer.

Lake mapping

If a lake had not been previously surveyed, contour and nearshore habitat maps were produced based upon a shoreline cruise and depth sounding that were done using the standard methods outlined in the Aquatic Habitat Inventory Manual (Dodge et al 1987). Lake outline maps were obtained from digital OBM maps (scale 1:20,000) supplied by the Provincial Mapping Office. Lake surface area and perimeter length were measured from digital maps using MapInfo Professional 4.1 software.

The depth contour map was digitized and the volume calculated using the area of each contour interval. If a lake had previously been surveyed we digitized the existing contour map, fitting it to the OBM lake outline maps. Maps treated in this manner have contour intervals expressed in feet. All values for lake volume and mean depth were then recalculated. The new volume values were on average within 9.2% (range 0.5 - 35.4%) of the values reported in the original lake surveys. Little Sheguiandah Lake was not included in this comparison because the original lake survey value for volume was in error. Field crews also reported that the existing contour maps (ie. available from historical lake surveys) for at least two lakes (Kakakise, O.S.A.) have significant errors. Therefore, it is likely that the volume values for those lakes are also inaccurate.

Data Management

All information collected was recorded on standard data forms. The data forms were specially designed to facilitate recording of information and accurate data entry. At the end of each lake survey all data forms and field book notes were stored in the laboratory. A summary map indicating all sampling sites was prepared for each lake by the field crews.

The data forms were cross-checked by the project biologist against field book notes and any coding errors or inconsistencies were corrected. The fish and crayfish sampling records were then entered into the FISHNET computer database. These data were stored on microcomputer diskettes with backup copies.

Hard copy computer printouts were generated, checked by the project biologist for accuracy and returned to the data entry person for revision. The original and corrected hard copies were returned to the project biologist to verify corrections.

Software used for storage, statistical analysis and mapping of water quality, lake morphometry, and species inventory data included the following: DBase IV; SPSS 6.1 for Windows; and MapInfo Professional 4.1. Paper copies of all data and maps are stored at the Cooperative Freshwater Ecology Unit.

RESULTS

Water Quality

A total of 154 lakes were water sampled (139 during winter 1996; 11 lakes in August 1996; 4 lakes in August 1997; Figure 4). Carmichael Lake, a basin of Nellie Lake, was sampled (data in Appendix A), but not included in the total number. The sampled lakes (median surface area 12.15 ha) represent 25.7% of all waterbodies by number and account for 87.7% of all lakes by surface area (Figure 5). Most of the unsampled waterbodies were small ponds under 1 ha surface area formed by beaver dams on streams. The lakes that were sampled spanned a range in elevation from 181 m to 415 m (Figure 6).

The lakes within the park exhibit a broad range in water quality (Figure 7, Table 3). Most of the 154 sampled lakes were acidic (range 4.3 - 7.6; median pH 5.2), but 43 had pH > 6.0, the threshold above which there is no noticeable effect on even the most acid-sensitive aquatic species. The highest pH's measured were 7.2 (Low Lake winter sample) and 7.6 (Casson Lake summer sample). The highest alkalinities measured were 43.3 mg/L (Lake #76) and 21.9 mg/L (Canis Lake). The lowest pH (4.3) and alkalinity (-2.5 mg/L) values were recorded for Little Superior Lake.

Low pH bogs that were presumably naturally acidic exist in the lowlands (eg. #45. #46), but most acidic lakes are associated with the orthoquartzite ridges (ie. Lorrain and Bar River Formations) (Figure 8). A notable exception is the group of acidic lakes (Billy, Turbid, Grey, Lake of the Woods) south of Bell Lake. Bedrock type cannot explain the low pH of these lakes. They rest on the Grenville Front Felsic Plutonic Rocks and two of them (Grey, Turbid) are in fact transected by acid-neutralizing diabase dykes. The most plausible explanation for the low pH is the presence of organic acids contributed by neighbouring wetlands.

For a few lakes we can reconstruct past chemical conditions using paleolimnological techniques. Sushil Dixit (Queen's University) examined sediment cores and produced the following diatom-inferred pre-industrial (ie. pre-1880) pH values for 8 lakes in the park: Acid Lake 5.64; Bell Lake 6.02; Carlyle Lake 6.21; George Lake 6.01; Johnnie Lake 6.01; Lumsden Lake 5.34; RuthRoy Lake 4.93; Terry Lake 5.64.

Most high pH (>6.0) lakes are located in the lowlands and associated with bedrock that experiences mineral weathering. The lakes with highest alkalinity (Figure 9) and calcium (Figure 10) levels are usually, but not always, adjacent to the limestone deposits of the Espanola Formation. In some cases deposits of glacial debris may be contributing acid-neutralizing minerals. Three distinct areas of high pH/alkalinity lakes exist: (1) to the north and northeast of the ridges (eg. Balsam, East Howry, Van Winkle); (2) in the lowlands of the MacGregor Bay basin (eg. York, Canis, Low); and (3) on the southern edge of the Chikanishing watershed (eg. Kakakise, Little Sheguiandah, Cranberry Bog). Most lakes remain sensitive to acidification (102/154 lakes with alkalinity < 2 mg/L).

Figure 4. Location of water sampled lakes

Figure 5. Frequency distribution of surface areas of water sampled lakes

Surface area (hectares)

Figure 6. Frequency distribution of elevations of water sampled lakes

Figure 7. Frequency distributions of water chemistry variables

Figure 7 (cont.) Frequency distributions of water chemistry variables

Figure 7 (cont.) Frequency distributions of water chemistry variables

Figure 7 (cont.) Frequency distributions of water chemistry variables

Figure 7 (cont.). Frequency distributions of water chemistry variables

Figure 7 (cont.). Frequency distributions of water chemistry variables

Table 3a. Median, minimum, maximum and number of values zero and <T for water chemistry variables. For explanation of "T" see Appendix A. Total number of lakes 154 (Nellie and Carmichael combined).

Variable	Median	Minimum	Maximum	# lakes with valid samples	# of lakes with zero values	# of lakes with <t.code< th=""></t.code<>
Aluminum (ug/L)	156	0	757	153	9	15
Ammonia + ammonium (mg/L)	0.052	0	0.698	153	2	4
Barium (ug/L)	16	5	43.4	153	0	0
Beryllium (ug/L)	0	0	0	153	153	0
Cadmium (ug/L)	0	0	3.2	153	121	28
Calcium (mg/L)	1.65	0.55	14.2	153	0	0
Chlorine (mg/L)	0.4	0	1.8	153	11	134
Chromium (ug/L)	0	0	2.2	153	136	15
Cobalt (ug/L)	1.4	0	9.99	153	50	13
Colour True (TCU)	12.6	0	123	153	1	0
Conductivity (uS/cm)	29.8	17.4	108.2	153	0	0
Copper (ug/L)	0	0	4	153	103	1
DIC (mg/L)	0.4	0	10.6	153	70	39
DOC (mg/L)	3.4	0	17.8	153	0	9
Hardness (mg/L)	6.4	2.2	51.2	153	0	0
Iron (ug/L)	85.1	0	2410	153	39	20
Lead (ug/L)	1.35	0	46.4	153	66	0
Magnesium (mg/L)	0.6	1.5	61	153	0	0
Manganese (ug/L)	75	4.02	490	153	0	0
Molybdenum (ug/L)	0	0	0.4	153	148	. 5
Nickel (ug/L)	7.35	0	20	153	6	7
Nitrate + nitrite (mg/L)	0.08	0	0.265	153	6	14
Nitrite (mg/L)	0.003	0	0.011	153	35	81
Nitrogen Total (mg/L)	0.28	0.04	1.06	153	0	6
рН	5.166	4.32	7.566	154	0	0
Phosphate (mg/L)	0	0	0.011	150	113	30

Table 3a (cont.). Median, minimum, maximum and number of values zero and <T for water chemistry variables. For explanation of "T" see Appendix A. Total number of lakes 154 (Nellie and Carmichael combined).

Variable	Median	Minimum	Maximum	# lakes with valid samples	# of lakes with zero values	# of lakes with <t code</t
Phosphorus Total (mg/L)	0.006	0	0.026	102	23	61
Potassium (mg/L)	0.37	0.13	1.05	153	٥	0
Silicate (mg/L)	1.16	0	3,88	153	1	2
Sodium (mg/L)	0.66	0.32	1,92	153	0	0
Strontium (ug/L)	12	4	28.8	153	0	44
Sulphate (mg/L)	7.5	3	12.5	153	0	0
Titanium (ug/L)	0	0	3.99	153	87	1
TIP alkalinity (mg/L CaCO ₃)	0.36	-2.52	43.33	154	٥	٥
Vanadium (ug/L)	0	0	0.6	153	145	8
Zinc (ug/L)	12.6	0	30	153	9	4

Table 3b. Median, minimum and maximum values for size and location of water sampled lakes. Total number of lake is 154.

Variable	Median	Minimum	Maximum
Area (ha)	12.15	0.7	810.1
Minimum distance to INCO superstack in Sudbury (km)	47.5	34	62
Elevation (m)	229	181	415
Watershed area (ha)	103.1	3.6	7426
Watershed area including upstream lakes (ha)	123.95	3.6	12952.5

Figure 8. Lake pH in Killarney Provincial Park

Figure 9. Alkalinity of Killarney Provincial Park lakes

Figure 10. Calcium levels in Killarney Provincial Park lakes

The catchment of only one high pH lake (#37) exists entirely on the Lorrain Formation and only one circumneutral lake (Teardrop) was found on the high ridges of the Bar River Formation. Lake #37 is probably buffered by the mica and feldspar that occurs in the lower portion of the Lorrain Formation (Tim Jones pers. comm. citing Card et al 1977). The pH of Teardrop Lake is maintained by a vein of diabase that borders the north shore (Wilf Meyer, Ontario Geological Survey, pers. comm.). The diabase is crumbling into fragments and precipitation falling on the side of the ridge is neutralized, before it reaches the lake, as it percolates through the loose grains of material. The existence of this diabase dyke was previously undocumented.

Relative to the distribution of DOC in 2587 Ontario lakes (Neary et al 1990), an unusually high proportion of Killarney lakes have DOC levels < 2 mg/L (Figure 11). Lakes with low DOC values exhibited high Secchi disc readings (Spearman correlation coefficient -0.87, P < 0.05). Most of the low DOC waters are located on the orthoquartzite ridges (ie. Lorrain and Bar River Formations) (Figure 12). The clearest lakes that we surveyed (Figure 13) were Nellie Lake (Secchi 27 m), Quartzite Lake (Secchi 26 m), and Little Superior Lake (Secchi 23.9 m). A Secchi depth of 30.2 m was recorded in Nellie Lake on September 1, 1997 during the synoptic thermal survey. In 14 lakes the Secchi disc was visible at the maximum depth of the lake.

High DOC, brown-coloured waters exist primarily in lakes associated with wetlands. The highest DOC values were measured in Lake #73 (17.8 mg/L), Lake #45 (17.4 mg/L), and Canis Lake (16.5 mg/L). The lowest Secchi disc measurements were 1.1 m (Lake #45) and 1.2 m (Tri Lakes SW, Canis Lake). The creamy appearance of TriLakes SW, noticed while water sampling on August 26, 1996, suggests that the low clarity in that lake may be due at least in part to the presence of suspended particulates.

Metals that are mobilized from the watersheds by acidification (ie. Al, Mn, Zn) were present at high concentrations in the lowest pH lakes. Most of those lakes are located on the orthoquartzite ridges (Figure 14). The metals nickel and copper are presumably transported through the atmosphere from the Sudbury smelters. Nickel levels in most lakes (105/153 lakes > 5 ug/L; median 7.4 ug/L)) were higher than the average value (< 3 ug/L) recorded in lakes remote from industrial sources (Beamish et al. 1975). Nevertheless, in all of our survey lakes both nickel and copper were at concentrations below provincial water quality guidelines (MOE 1984).

The nutrient status of the lakes that were sampled can be categorized as either oligotrophic, mesotrophic or dystrophic. The vast majority of lakes were oligotrophic, with total phosphorus concentrations of zero or present only at measurable trace amounts (Figure 7, Table 3).

There is overwhelming evidence that water quality recovery is occuring in Killarney's acidified lakes. Annual summertime monitoring of water chemistry in 8 lakes since 1981 has revealed trends towards increasing pH and decreasing sulphate levels (Appendix E). Tri-annual monitoring of under-ice pH in the park's lake trout lakes also shows recovery since 1980 (Figure

Distribution of DOC Levels in Killarney Lakes Relative to Other Ontario Lakes Figure 11.

46

Figure 12. DOC levels in Killarney Provincial Park lakes

Figure 13. Frequency distribution of Secchi depths

48

Figure 15. Recovery rates of acid-damaged Killarney Park lake trout lakes

15). The mean pH of these lakes increased about 0.5 units between 1980 and 1986. All lakes are showing some signs of improvement. Even the 6 small lakes on the summit of Blue Ridge considered to be sensitive monitors of atmospheric inputs (Beamish et al. 1975), have experienced improvements in water quality since 1973 (increased pH, decreased metals, ions, sulphate; Table 4).

The chemical recovery of Partridge Lake is notably faster than that of adjacent lakes. Its current pH of 5.7 is 0.5 units higher than it was in 1986-1987 (Snucins and Shuter 1991). In contrast, the pH of Norway Lake (pH 5.04 in 1987, pH 5.1 in 1996) has changed little during the same period. Nearby lakes, Sandy and Amikogaming, also have a current pH of 5.1.

The recovery rate of Partridge Lake could be influenced by a number of factors (eg. surficial geology, bedrock geology, water replacement time, internal alkalinity generation). The lake has a smaller volume than any of the adjacent waterbodies and this might account for some of the difference in recovery rates. There is also a large difference in the type of bedrock underlying these lakes. The catchment of Partridge Lake is almost entirely underlain by the Gordon Lake Formation, a geological unit containing minerals that can contribute to buffering (Tim Jones pers. comm. citing Card et al 1977). The watersheds of the slow-recovery lakes are dominated by the erosion-resistant Lorrain and Bar River Formations. There is no documentation of differences in surficial geology between drainages nor did we measure in Partridge Lake any hypolimnetic hypoxia which might indicate higher internal alkalinity generation.

Dissolved Oxygen and Temperature

At the time of the biological surveys all 119 lakes had summer dissolved oxygen levels that were not limiting for fish (ie. > 5 mg/L) (Table 5). However, 48 lakes had levels below 5 mg/L in at least a portion of the water column and in Cranberry Bog only the top meter of water had levels > 5 mg/L. Dissolved oxygen levels \leq 1 mg/L were measured in a portion of the water column in 33 lakes.

In 48 of the 119 lakes some winter oxygen depletion (dissolved oxygen < 5 mg/L) occured. Extremely low oxygen levels (< 1 mg/L) lethal to most fish species were measured in 10 lakes during the winter, but in only Wagon Road Lake and Sealey's Lake did those levels exist throughout the water column.

The 1997 synoptic thermal survey was done at the time of maximum thermocline development (Table 6). For the 63 lakes with thermoclines (Table 7) Pearson correlation coefficients were calculated between log transformed values of thermocline depth (ie. top of thermocline), lake elevation, lake area, colour, DOC, maximum fetch, mean depth, and maximum depth (Table 8). Significant correlations ($P \le 0.05$) with thermocline depth existed for DOC, colour, maximum depth, mean depth, lake area and maximum fetch. These variables were entered into a stepwise multiple regression to predict thermocline depth. This produced the following linear regression equation ($r^2 = 0.85$):

Log (thermocline depth) = 1.065187 - 0.661230 (log DOC + 1) + 0.077467 (log area)

The strongest single predictor of thermocline depth was DOC ($r^2 = 0.80$):

Log (thermocline depth) = 1.224420 - 0.716357 (log DOC + 1).

A quadratic function provided a better fit $(r^2 = 0.90)$ due to lakes with either very high or very low DOC values having shallower thermocline depths than expected from the linear regression.

An analysis of the 18 thermally stratified lake trout lakes showed that thermocline depth was significantly correlated only with colour and DOC. The best predictor of thermocline depth in these lake trout lakes was DOC (linear regression $r^2 = 0.85$):

Log (thermocline depth) = 1.157808 - 0.508169 (log DOC + 1)

A quadratic function improved the relationship only marginally ($r^2 = 0.87$).

Discriminant analysis was used to determine the factors that distinguish between lakes that had a thermocline and those that did not. Data from 23 lakes without thermoclines and 63 lakes with thermoclines were used. Interestingly, two of the lake trout lakes (Grace, Teardrop) did not have thermoclines. The variables entered into the analysis were those found to be significantly correlated with thermocline depth in stratified lakes (DOC, colour, maximum depth, mean depth, maximum fetch, and lake area). The resulting discriminant function included DOC and maximum depth as factors. Overall correct classification of cases was 83.7%. Lakes with a thermocline were assigned to the correct group 82.6% of the time. Lakes that did not have a thermocline were correctly classified in 84.1% of cases. Low values for DOC (ie. high water clarity) and maximum depth (ie. shallow basins) were associated with lakes that did not have a thermocline.

Physical Characteristics of Biological Survey Lakes

The 119 lakes with biological surveys spanned a wide range in surface area, maximum depth, mean depth, and elevation (Figure 16, Table 9). Biological sampling was done on lakes with a combined total surface area of 6369.3 ha or 84.7% of the total surface area of all lakes. Small (< 5 ha) lakes were undersampled relative to their overall abundance (compare Figure 16 and Figure 5). The water colour was yellow/brown in 63 lakes, blue/green in 51 lakes and colourless in 5 lakes. Contour maps were not produced for 4 lakes that were either too shallow or too vegetated for accurate depth sounding.

Water chemistry of six lakes on Blue Ridge sampled August 20, 1973 and August 27, 1996. Parameters that differed significantly (Wilcoxon paired-sample test, p < 0.05) between years are indicated by an asterisk. Data for 1973 from Beamish et al. (1975). Table 4.

Lake name	Surface	Surface area (ha)	• Hq		[H]X103 •	103 •	SOM (mg/L.)	g/L) *	C! (mg/L)	A.) *	Ni (ug/L) •	٦,٠	Cu (ug/L)		(7/2m) uz /2m	/L)
1973 / 1990	1973	1996	1973	9661	1973	1996	1973	19%	1973	9661	1973	1996	1973	1998	1973	1996
1A/#19	4.6	98.6	4.4	4.7	3.981	1 995	11.2	7	-	0.4 <t< td=""><td>16</td><td>6</td><td>3</td><td>1.6</td><td>22</td><td>18</td></t<>	16	6	3	1.6	22	18
2A / #27	4.6	3.1	8 7	\$	1.585	1.0	6	5.5	-	0	11	6.5	3	0.6 <t< td=""><td>21</td><td>12</td></t<>	21	12
3A/#29	23	2.4	4.1	42	7,943	631	11.8	7	1	0.4<¬T	91	01	4	2	23	14
4A / #28	2.3	2.5	4.4	4.7	3.981	1.995	9.4	9	8:0	0	12	5.5	2	1.8	15	80
\$A / #30	2.3	2.5	4.5	4.7	3.162	1.995	7.8	5.5	1.2	0	П	6.5	2	2.4	14	12
6A / Quartzite	11.6	15.7	4.5	4.7	3.162	1.995	10.6	7	1.2	0	91	10	3	2.6	30	20
NEAN			4.45	4.67	3.969 2.548 (pH 4.40) (pH 4.59)	2.548 (pH 4.59)	96.6	6.33	1.03	0.13	13.7	7.9	88	8:1	20.8	14.0

Lake name	Fe (1	Fc (14g.L.)	\ (1/gu) ቢላ	VL) *	Na (mg/L)	gT).	K (mg·l.)	1.) •	Ng (mg/L) •	y.l.) •	Ca (mg/L.) •	VL)	Cond. (umho/cm²) •	ho/cm²) •	
1973 / 1990	1973	1996	1973	9661	1973	9661	1973	861	1973	861	1973	1996	1973	9861	
14/#19	64	40 <t< td=""><td>250</td><td>01.1</td><td>0.53</td><td>0.48</td><td>0.33</td><td>0.31</td><td>0.51</td><td>0.36</td><td>2.19</td><td>1.05</td><td>8</td><td>24</td><td></td></t<>	250	01.1	0.53	0.48	0.33	0.31	0.51	0.36	2.19	1.05	8	24	
2A / #27	୍ଦିକ	120	170	73	95.0	0.52	97.0	0.2	0.48	0.34	2.15	1	28	81	
3A/#29	91	0+	140	3	0.35	0.28	0.3	0.17	0 36	0.2	2.03	0.85	20	27	
4A / #28	32	100	130	62	0.55	0.48	0 32	6.50	0.43	0.28	2.05	1.05	75	92	
SA / #30	19	60 <t< td=""><td>220</td><td>78</td><td>0.53</td><td>0.48</td><td>0.2</td><td>910</td><td>0.42</td><td>0.32</td><td>1.08</td><td>0.9</td><td>30</td><td>90</td><td></td></t<>	220	78	0.53	0.48	0.2	910	0.42	0.32	1.08	0.9	30	90	
6A / Quartzite	38	٥	340	200	0.49	11 0	0.31	0.21	0.5	0.36	2.25	1.15	35	24	
NEAN	45.7	0:09	208.3	102.8	0.502	0.447	0.287	0.223	0.450	0.310	96:I	1.00	42.2	21.8	

Table 5. Temperature and dissolved oxygen characteristics of lakes determined during biological surveys and winter water sampling. Profiles were done at 1 m intervals beginning at the surface (summer) and at 1 m from the surface (winter). Profiles done with 15m long cable indicated by *. Profiles done with 30 m long cable indicated by **.

																				_	
D.C. S.1 mg/L, depth	-		Ť	ì	14-15	-	-		-	1	1	Į	Ţ	!	í	1	ŀ	!		6-2	1
D.OS. mg/L. depth	i	1	14-15	!	12-15	13-15	25	-	ŀ	į	i	1	1	ì	2	1	i	1	1	6-2	13
Strito: deput	9.8	26	16	-	16	91	36	ŀ	ļ	9	3	8.6	61	10.5	3	6	ì	\$	3.5	10	13.7
Winter profile date.	February 1/96	January30/96	January23/96	not done	January23/96	February 2/96	January23/96	not done	not done	February 1/96	February 2/96	February 2/96	Janauny23/96	February 2/96	February 2/96	February 1/96	not done	February 2/96	February 1/96	January23796	Janauary23/96
D.O. S. I. mg/L. depth,	1	i		994	1	15.	ł	4-6	1	1	1	1	ŀ	ı	bottom		ŀ	8	1	6	1
D.O. <51 mg/L. depth	1	ı	1	-	ı	13-15*	!	4-6	7-10	!	3.5	-	1	1	2-bottom	1	15-16	8-9	рощош	8-9	=
Thermocline depth	3-5	6-5	2-5	1	2-7	3-6	4-8	3-5	2-6	no thermocline	no thermocline	4-7	5-10	5-7	0-роцош	8-9	2-4	4-7	no thermocline	2-6	3-7
Station depth	9.5	26	15	1	15	1.1	17	6.5	11	7+	3.9	10	24+	14.5	2.8	14.5	16.5	6	3.75	10	11.5
Summer profile date	May23/96	May31/95	June7/96	not done	July27/96	July30/96	July7/96	August 17/96	July31/96	July6/96	July 17/97	June 5/96	July23/96	May29/95	July 1.97	June20/95	June 5,97	July30/96	July 1/97	July25/96	August24/96
Matthewal	9.8	29	16.7	1.5	91	17	26.8	80	10.3	9.6	3.9	9.8	26	15.5	2.8	14.6	17.9	8.6	3.4	10.5	13.7
1331	A.Y. Jackson	Acid	Amikogaming	Artist	Balsam	Beaver	Bell	Betty	Billy	Bizhiw	Bodina	Boundary	Bunnyrabbit	Burke	Canis	Carlyle	Casson	Car	Cave	Chain	Clearsilver

Temperature and dissolved oxygen characteristics of lakes determined during biological surveys and winter water sampling. Profiles were done at 1 m intervals beginning at the surface (summer) and at 1 m from the surface (winter). Profiles done with 15m long cable indicated by *. Profiles done with 30 m long cable indicated by *. Table 5 (cont.).

DAO. = 1 mig/L. depth	3.5	1		ı	ŀ	ı	l	I	1	ı	ı	ı	ı	-	-	1	1		ŀ	ı	1
D.O.S. mg/L depth	1-4	1-3	1-6			6-7	-	1	-	1	3-8	2	ı	16-17	35-36	-	#	-	,	1	ŀ
Station deput	\$	4	7	ı	24	7.1	3.5	1	80	10	÷80	2.5	01	18	37	2	-	13	6	-	6
Winter profile date	February 1/96	February 2/96	February 9/96	not done	February 2/96	January23/96	February 2/96	not done	January 24/96	Janaury23/96	Janaury23/96	February 2/96	Janaury 24/96	February 2/96	Janaury 30/96	Janaury 24/96	not done	February 2/96	January 24/96	not done	January 24/96
D.O. S. I mg/L. depth	3-4	1	4-6	9-12		5-7	1	15-18	80	8-9	6-8	ı	not measured	1	ł	1	-		•••	11	I
D.O. <5 mg/L. depth	1.4	ŀ	4-6	7-12	•	3-7	8	9-18	7-8	4-9	4-8	ı	not measured	ı	1	-	4-bottom		•••	11-8	1
Thermocline depth	2-4	по фетпосіте	S-1	3-9	8-9	2-6	2-5	4-8	1-7	2-2	6-£	no thermocline	<i>L-</i> \$	3-6	01-2	no thermocline	3-5	8-2	8-5	2-8	2-6
Station depth	\$	4	7	12.5	56	80	8.1	61	8.5	9.1	6	3	13	18+	37	7	5.2	91	36	12	7.5
Summer profile date	August29/95	July 2/96	July3/96	August14/96	Јине8/96	August 1/95	May30/95	August 19/96	June18/96	August 3/96	August18/96	June12/95	June 8/96	June25/96	June 14/96	June20/96	August 12/97	79/1 Rugus	June 10/96	30/06 ylul	June18/96
Maynum depth.	\$	4.2	7.1	14	24.4	7.1	9.7	20	8.5	01	9.8	3.5	8.91	19.2	9'9£	7	5.6	17.2	37.5	11.8	6
2000	Стальетту Вов	Crater E	Crater W	Cuckoo	David	Deacon	de Lamorandiere	East Howry	Fish	Fox	Frank	Freeland	Gail	Cem	George	Goose	Goschen	Grace	Grt Mountain	Grey	Grow

Temperature and dissolved oxygen characteristics of lakes determined during biological surveys and winter water sampling. Profiles were done at 1 m intervals beginning at the surface (summer) and at 1 m from the surface (winter). Profiles done with 15m long cable indicated by *.

Table 5 (cont.).

10.00	Meptin use	Starting profile date	Station depth	Thermodine depth V	D.O. < S mg/L. depth	D.O. S.I. mg/L depth	Winter profile date	Standa depth	D.O.S. mg/L. depth	n,0,5 1 mg/L, depth
Hanwood	12	July18/96	11	3-8	not measured	not measured	February 2/96	11.5	***	ŀ
Harry	12.5	August19/96	7.5	4-7	5-7	6-7	Janaury23/96	12+	11-12	I
Heaven	17.8	July18/96	18	1-6	71-7	11-17	January 23/96	17	11-16	13-16
Helen	41.2	July10/96	61	5-7	ı	1	Јапацагу 30/96	25	1	ı
Hemlock	4.5	July23/96	\$	no thermocline	-	1	January23/96	4	ı	ì
Номту	27.5	June25/96	18+	3-7	_	_	February 2/96	20	1	ı
Ishmael	19.8	July6/95	18	4-8	-	ł	Janauary30/96	61	18	ı
Johnnie	33.6	July13/95	30	6-5	•	•1	January23/96	33	1	ì
Kakakise	30.5	June21/95	25	3-10	24	***	January24/96	26	25	ı
Kidney	1.8	June13/96	1.8	no thermocline	-		February I /96	1.8	1	
Killamey	61	not done	1	1	1	ı	January 30/96	\$0+	1	1
Lake of the Woods	9	September 14/96	9	no thermocline	1	ı	not done	-	***	ı
Leech	6.7	June 9/97	7.5	2-5	6-7	ı	not done	1	ı	ŧ
Little Bell	7.2	July26/96	7	2-6	4-6	5-6	January23/96	7.2	6-7	7
Little Leech	9	June 8/97	\$	1-3	1	!	not done	ı	1	ı
Little Mink	7.7	June 8/97	7.3	24	ı	-	January 24/96	7	9	ı
Ld Mountain	25	June5/96	25	4-5	not measured	not measured	January 24/96	01	_	ł
Little Sheguiandah	2.7	May24/95	2.3	no thermocline	1	_	February 1/96	2.7	2	-
Little Superior	33.6	July 15/97	38(?)	5-6	ı	1	January 23/97	38(?)	35-38	1
Год Воош	5,5	June29/95	4.2	2-4	4	4	January23/96	5.5	1	1

Temperature and dissolved oxygen characteristics of lakes determined during biological surveys and winter water sampling. Profiles were done at 1 m intervals beginning at the surface (summer) and at 1 m from the surface (winter). Profiles done with 15m long cable indicated by *. Profiles done with 30 m long cable indicated by *. Table 5 (cont.).

														· ·						1
n O S mg/L, depth	ı		-	1		1	***	l	1	-	ı	-	_		_	1	1	1	ï	ŀ
U.O.S.	ı	I	2-4	1	1	1	31	1	15	t	ı	ı	7-8	1	1	1	!	5-6	17	6
Station depth	72	16	5	12	4.5	48	31	39	91	\$	5.5	1	6	26	45	12.2	3	7	18	10
Winter profile date	January30/96	January 24/96	January 24/96	February 1/96	February 2/96	February 2/96	January 23/96	January 24/96	January 23/96	February 2/96	February 1/96	not done	January 23/96	January 23/96	February 2/96	January 24/96	February 2/96	January 24/96	January 23/96	January 23/96
10.0, s.1 mg/l. depth	ŀ	i	ı	1	i	!	ŀ	ı	ı	ŀ	ŀ	ı	7-8	-		11-13	1	6-7	1	1
D.O. < S mg/L, depth	20-23		pottom	1	1	1	t	ŀ	ı	ı	ı	ı	3-8	_		8-13	1	4-7	!	1
Thermocline	6-5	8-9	2-3	8-8	2-4	no thermocline	3-6	ı	3-6	3-6	no thermocline	8-8	2-6	9-6	5-7	3-7	2-5	2-6	4-9	3-5
Scation depth	24	12	4.5	12.5	6.5	44.3	25		15	6.5	7	30	8.2	28.4	45	14	8.5	8	18.5	10
Summer profile date;	July10/96	June 1/95	June 3/97	July 4/97	June 3/97	June 19/97	June 11/96	not done	June 11/96	July8/96	July7/96	July 25/97	August 15/95	July 15/97	August 4/97	June20/96	May28/95	June22/96	June28/96	June 8/96
Maximum	28.4	21.8	\$	12.2	6.4	54.9	33.6	39.7	6.91	6.4	6.4	30.5	9.1	28.7	46.2	14.6	10.1	7	20	15.9
217	Low	Lumsden	Mink	Muriel	Murray	Nellie (includes Carmichael)	Norway	0.S.A.	Partridge	Patten	Pearl	Peter	Pike	Proulx	Quartzile	Rocky	Roque	Round Otter	RuthRoy	Sandy

Temperature and dissolved oxygen characteristics of lakes determined during biological surveys and winter water sampling. Profiles were done at 1 m intervals beginning at the surface (summer) and at 1 m from the surface (winter). Profiles done with 15m long cable indicated by *. Profiles done with 30 m long cable indicated by *. Table 5 (cont.).

ng/L, depth	1-2	ı	ı	ı	ı	1	1	. !	1	1	1	-	ŀ	1	ı	1	1-3	ŀ	1	ļ
D.O. S. mg/L. depth p	1-2	bottom	i	13	1	1	1	i	ì	ļ	1	1	1	13-14	2-4	16-17	1-3	ŀ	61	4-5
Statio depth	3.5	21	3	4	20.3	15	60	34	20	1	1	**	ı	15	4.9	88	4	36.5	20	9
Winter profile date	February 1/96	January 23/96	January 23/96	February 2/96	February 2/96	February 1/96	January 30/96	January 30/96	February 1/96	not done	not done	not done	not done	February 2/96	February 2/96	February 2/96	January 30/96	January 23/96	February 2/96	February 12/96
D.O. = 1 mg/L depth	1	ı	!	!	!	1	1	i	1	4-5	4-5	8.11	6	12-13	_	٩	1	1	61	pottom
D.O. < S mg/L. depth	2-3	-	-		[-	1	1	_	3-5	3-5	3-11	6-8	12-13	4	14-15*	ı	_	17-19	3-bottom
Thermocline depth	0-3	no thermocline	no thermocline	no thermocline	6-5	4-7	2-5	6-10	3-6	3-5	2-5	2-5	4-8	3-6	4-5	01-9	no thermocline	5-10	3-7	7.7
Station depth	3.5	20.6		3.5	91	16.5	8.5	39	20	9	9	12	+6	13.3		17	3	34	20	5.5
Summer profile date	August9/96	July 16/97	July 16/96	.May27/96	July5/96	June27/96	June8/95	July22/96	June8/96	August 17/96	August 15/96	August 14/96	August7/96	June 21/97	July31/96	July20/96	June9/95	July25/96	July 2/96	August 16/97
Menimum	4.1	21.8	\$	4.9	20.3	16.6	8	51.9	21.4		5.5	11.9	9.1	13.8	4.9	061	4.2	42.7	20.4	5.8
200	Scaley's	Shingwak	Silver	Solomon	Spark	Teardrop	Тепу	Threenarrows	Topaz	TriLakes N	TriLakes SE	TriLakes SW	Turbid	Turtleback	Van	Van Winkle	Wagon Road	Whiskeyjack	York	9#

Temperature and dissolved oxygen characteristics of lakes determined during biological surveys and winter water sampling. Profiles were done at 1 m intervals beginning at the surface (summer) and at 1 m from the surface (winter). Profiles done with 15m long cable indicated by *. Profiles done with 30 m long cable indicated by *. Table 5 (cont.).

D.O.S.		1	-	!	1	ļ	1	-	-	_	-	ı	-	-	-	12-13	4-5
n.o.s. mg/L. depth	2-6	1		-		-	17	***	i i	1-2	19-22	È	***	***	***	5-13	2-5
Stationesph	7.5	1.5	11	1.5	8	\$	18	2.5	16	2.8	23	1.8	2.5	4	4	14	9
Winter profile date	February 12/96	February 12/96	February 9/96	February 9/96	February 9/96	February 9/96	February 9/96	February 9/96	February 9/96	February 13/96	February 12/96	February 9/96	February 9/96	February 9/96	February9/96	February 12/96	February 12/96
D.O. ≤ 1 mg/L. depth	6-8.75	ı	ŀ	ŀ	-	i	i	ŀ	12-15	ŧ	21-22	ŀ	ŀ	7-bottom	day.	9-13	5-bottom
D.O. < 5 mg/L depth	3-8.75	1	1	ŀ	ŀ	ł	ļ	1	10-15	1	19-22	1	1	7-bottom	_	5-13	4-bottom
Thermodline	24	no thermocline	9-5	no thermocline	3-7	no thermocline	3-8	no thermocline	no thermocline	3-7	1	5-1	2.4				
Station depth	6	2.2	11.8	5.1	8	9.2	18.3	5.2	15.5	2.5	22	2.2	9	12	-	13.8	9'9
Summer profile date	August 15/97	August 17/97	August 3/97	August 4/97	August 1/97	August 1/97	July 31.97	76/0£ Anr	July6/96	August 13/97	96/919un(76/61 ylut	July 20/97	July 21/97	not done	76/S1 YING	July 6/97
Maximism depth	9.5	2.2	12.0	1.5	8.1	9:9	18.8	5.4	91	2.7	24.4	2.5	6.4	11.7	4.6	1.2.1	6.5
3(3)	LM2	6#	H24	HZS	M27	#28	11.29	N30	M37A	1145	65#	₩9#	165	M66	69#	#74	97,11

Table 6. Weekly temperature profiles (August - September 1997) in A.Y. Jackson and George Lakes. Profiles were measured at 1 m intervals. Station depth varied between sampling dates, therefore to allow comparison between dates the temperature at the maximum depth measured on all occasions (10 m in A.Y. Jackson Lake, 37 m in George Lake) was the "bottom temperature". Profiles obtained during synoptic survey indicated by *.

Lake	Date	Surface	Bottom	Station depth	Thermoclin	e depth (m)
		temperature (°C)	temperature (°C)	(m).	Top -	Bottom
A.Y. Jackson	August 20	21.7	11.0	10	6	8
	August 25 •	21.9	10.5	10.6	7	9
	September 12	18.5	10.6	10.2	7	9
	September 16	19.4	12.0	10.3	7	9
George	August 20	20.9	7.2	42	8	9
	August 27 *	19.8	5.6	38	9 (8.5)#	10
	September 11	18.9	7.0	38	9	11
	September 14	18.7	6.8	37	9	11

[#] Number in parentheses is thermocline depth based upon measurements at 0.5 m intervals.

Table 7. Thermocline depths and dissolved oxygen levels measured during thermal survey August 25-September 1, 1997. * indicates 15 m cord was used.

Lake	Date	Surface	Bottom.	Station	Thermoeline	depth (m)	D.O. < 5	D.O. ≤1
		temperature (°C)	temperature (°C)	depth (m)	Тор	Bottom	mg/L depth (m)	mg/L depth (m)
Acid	August 26	19.4	4.9	27.2	10	12	27	
Amikogaming	August 30	20.2	5.9	15	7	9	14 - 15	
A.Y. Jackson	August 25	21.9	9.9	10.6	7	9	10 - 10.5	
Balsam	August 28	20.2	6.8	16.3	5	7	8 - 15	12 - 15
Beaver	August 25	21.5	4.8	16	4	6	5 - 15	12 - 15
Bell	August 29	20.6	6.3	25.2	6.5	8	25	_
Billy	August 31	20.6	5.3	10.3	3	6	6 - 10	7 - 10
Boundary	August 27	20.1	15.2	10.1	8	9		-
Canis	August 31	21.7	17.5	2.8	1.5	2.5	2 - 2.5	2,5
Carlyle	August 29	19.3	8	13	6	8	13	
Cat	August 26	19.9	13	8.6	6	7	7 - 8.5	7 - 8.5
Chain	August 29	19.5	8.1	6.2	4	6	5 - 6	6
Clearsilver	August 26	19.4	9.4	13.2	8	11	13	13
Cranberry Bog	August 26	21.2	10.1	5	3	5	3 - 5	5
David	August 26	19.6	7.3	24.4	10	12		-
Deacon	August 28	19.8	9.8	7.5	4	7	5 - 7.5	5 - 7.5
Fish	August 27	20.7	14.5	8.2	6.5	8	7.5 - 8	В
Fox	August 28	19.7	9.4	10.6	5	7	6 - 10	6 - 10
Frank	August 29	21.4	8.2	7.3	4.5	6	4 - 7	4.5 - 7
Freeland	August 25	21.2	17.1	3	-	_		-
Gail	August 26	20.4	19.7	16.1		_		**
Gem	August 26	20.2	4.9	19.5	5	7	-	_
George	August 27	19.8	5.6	37.3	8.5	10		-
Goose	August 26	20.9	16.5	2	-	_	0.5 - 2	1.5 - 2
Goschen	August 28	20.1	13.4	5.9	3.5	5.5	4.5 - 5.5	4.5 - 5.5
Grace	September 1	20.7	16.1	13.3	-	_		
Great Mountain	August 26	19.7	5.1	36.4	7.5	10.0	36	_
Grey	August 31	20.4	7,2	12.4	5.0	7.0	9 - 12	10 - 12
Grow	August 26	21.2	10.6	8.7	5.5	8.0	6 - 8.5	6.5 - 8.5

Table 7 (cont.). Thermocline depths and dissolved oxygen levels measured during thermal survey August 25-September 1, 1997. * indicates 15 m cord was used.

Lake	Date	Surface	Bottom	Station	Thermocline depth (m)		D.O. < 5	D.O. ≤ 1
3 510		temperature (°C)	temperature (°C)	depth (m)	Top	Bottom	mg/L depth (m)	mg/L depth (m)
Hanwood	August 26	20.2	8.5	12	6	8	7 - 12	10 - 12
Нагту	August 29	21.1	10.4	9.5	6	8	6.5 - 9	7 - 9
Heaven	August 29	20.4	5.1	16.5	4	6	7 - 16	12 - 14
Helen	September 1	20.5	4.4	40	6	9	38 - 40	40
Hemlock	August 30	20.2	19.9	4	5	7	-	-
Howry	August 26	20.1	7	27.5	6	9	-	-
Ishmael	August 31	20.8	6.4	19.2	6	8.5	16 - 19	18 - 19
Johnnie	August 30	20.4	5.4	32.3	7	8.5	32	-
Kakakise	August 30	20	5.2	20.7	7.5	9.5	-	-
Killarney	August 27	. 19	4.6	60.3	10.5	12		
Leech	August 25	21.9	18.4	7	5	9	7	-
Little Bell	August 29	19.6	15.1	5.6	4	5	4.5 - 5	5
Little Mountain	August 26	18.7	6.7	24	11.5	12.5	24	-
Little Sheg.	August 25	20.8	19.4	2.8	8	12		-
Little Superior	September 1	18.9	9.8	33	2	-	-	
Log Boom	August 29	19.1	16.4	5.5	10	13	5 - 5.5	5.5
Low	September 1	20.2	4.8	27.6	7	9	18 - 27	-
Lumsden	August 26	19.8	7.8	20	11	12	-	~
Murray	August 25	20.9	18.3	6	4	8		
Nellie	September 1	18.7	9.6	>60.0	10.5	12		
Norway	August 29	20.6	4.9	33	9	10		
O.S.A	August 27	19.7	7.9	38.4	13	14		
Patten	September 1	20.2	13.7	7.4	5.5	6.5	6 - 7	6 - 7
Partridge	August 29	21	10.1	16	9	11	-	
Peter*	August 28	19.5	5.8	30	6	9	-	
Pike	August 29	21.8	8.7	8.5	4	7	4.5 - 8	4.5 - 8
Proulx	September I	19.4	10.2	29	10	11	-	
Quartzite	August 31	18.6	7.9	44	8	9		
Rocky	August 26	20.5	5.7	14,3	5	7	6 - 13	9 - 13

Table 7 (cont.). Thermocline depths and dissolved oxygen levels measured during thermal survey August 25-September 1, 1997. * indicates 15 m cord was used.

Take	Date	Surface	Bottom	Station	Thermocline depth (m)		D.O. < 5	D.O. ≤1
		(°C)	(°C)	depth (m)	Top	Bottom	mg/L depth (m)	mg/L. depth (m)
Round Otter	August 27	20.1	9.2	7	3.5	6	4-7	4.5 - 7
Ruth Roy	August 30	19.5	17.2	17.1	6	9	-	-
Sandy	August 30	19.5	17.1	10	-	-		-
Sealey's	August 26	22.1	9.6	4	2	4	1.5 - 4	3.5 - 4
Shingwak	September 1	19.2	16.2	20.9	-	-	-	_
Teardrop	August 28	18.5	12.8	16.2			15 - 16	_
Тепу	August 29	19,2	5.4	9	4	6	9	-
Threenarrows*	September 1	20.7	6.4	45	7	10	-	-
Trilakes N	August 26	20.7	16.7	5.1		-	4.5 - 5	5
Trilakes SE	August 26	20.4	14.8	5.5	4	5	4.5 - 5.5	4.5 - 5.5
Trilakes SW	August 26	20.7	4.5	11.1	3	6	4-11	5-11
Turbid	August 30	20.4	7.8	8.8	5.5	8,5	7 - 8.5	8 - 8.5
Van	August 26	20.8	18.4	5.4	-	_	5	_
Van Winkle *	August 26	20.1	6.7	18.5	7	10	14 - 15	15
Wagon Road	August 25	22.2	11.8	4.2	0.5	4	2.5 - 4	
York	September 1	20.6	5.3	20.1	4	7	-	-
#24	August 31	19.8	19.2	12	-	_	-	-
#27	August 31	19.8	19.4	8.5	_			_
#28	August 31	19.8	19	6.8	-	_	_	-
#29	August 30	20.8	9	18.5	-	_	18 - 18.5	
#30	August 30	21.9	19.9	5		-		
#45	August 29	21.2	16.5	2.9	1	2.5	2.5	-
#59 *	September 1	21.2	5.2	26.7	5	7		_
#64	August 27	19.9	19.2	3.2	_	-	3	-
#65	August 27	20	18.7	7	-	-	7	-
#66	August 27	20.8	5.8	11.5	6	8	7 - 11.5	10 - 11.5
#69	August 26	19.9	19.5	4.6	_	-	-	_
#76	August 31	21.5	10.3	6.9	3.5	5.5	4 - 6.5	4,5 - 6.5

Table 8. Pearson correlation matrix for selected variables (log transformed) measured during synoptic thermal survey. Significant correlations based on Bonferroniadjusted probabilities: $P \le 0.05$ indicated by *.

(a) All thermally stratified lakes (N=63)

	Elevation	Агеа	Colour	DOC +1	Fetch	Mean depth	Max. depth
Area	3788*						
Colour	2100	2312					
DOC+1	3548	2310	,9093*				
Fetch	3862	.9301*	1820	2029			
Mean depth	.1130	,4143°	5968*	6974*	.4017*		
Max. depth	.0675	.5612*	6602*	7338*	.4937*	.8833*	
Thermocline depth (top)	.1049	.4813*	8278*	8969*	.4706*	.6917*	.7860*

(b) Thermally stratified lake trout lakes (N=18)

	Elevation	Area	Colour	DOC + 1	Fetch	Mean depth	Max. depti
Area	1104						
Colour	2686	1544					
DOC + 1	4450	1487	.9269*				
Fetch	0712	.8784	1875	2255			
Mean depth	2630	0404	1311	1642	.1654		
Max. depth	.0266	.5483	3769	4710	.4897	.4539	
Thermocline depth (top)	.4608	.0803	8528*	9198*	.0507	1389	.3009

10 Median 225 Figure 16. Frequency Distributions for Physical Characteristics of Biological Survey Lakes 276:300 Median 4.7 Max 355 Min 181 N=119 Max 20.5 N=115 Min 0.5 251-215 Mean depth (m) Elevation (m) 228-250 201.225 2200 22 9 35 15 9 30 25 20 20 6 30 20 0 Number of lakes Number of lakes 65 7500 720 ,00:00 60,00 20:50 Maximum depth (m) Surface area (ha) 6.7.8 15:20 4016 10.10 Median 17.6 Max 810.1 N = 119Min 0.8 5,0 Median 10.5 Max 61.0 N = 119 Min. 1.5. Ś 0 35 8 25 20 15 9 30 25 20 5 9 S 0 Number of lakes Number of lakes

Physical characteristics of biological survey lakes. Volumes obtained from old lake survey contour maps that were digitized and fitted to OBM lake outlines are indicated by *. Maximum depths obtained from Ontario Lake Survey Database indicated by *. Table 9.

Lake	Surface Area (ha)	Volume (10°m³)	Perimeter (km)	Shoreline develop. factor	Elevation (m)	Maximum depth (m)	Mean depth (m)	Secchi depth (m)	Water colour	Number of cottages/campsites	Watershed
A Y. Jackson	6.5	45.70•	1.59	1.76	206	9.8*	7.0	5	pluc/green	1/0	Chikanishing
Acid	19.6	213.38*	1.96	1.25	275	29.0	10.9	67	blue/green	1/0	Chikanishing
Amikogaming	17.8	132.64	2.95	. 1.97	222	16.7	7.5	7.0	blue/green	0 / 0	Childanishing
Antist	26.0	по тар	4.63	2.54	185	1.5	que con	1.5 (bottom)	yellow/brown	. 0/0	Baie Fine
Balsam	266.9	1173.94	26 35	4.55	224	16.0	P.T	3.7	yellow/brown	0/7	Mahzenazing
Beaver	16.2	105.27	3 29	2.31	224	17.0	6.5	3.1	yellow/brown	0 / 0	Houry Creek
Bell	347.4	2827.43*	34.83	5.27	1221	26.8*	8.1	3.8	yellow/brown	1 lodge / 12	Mahzenazing
Betty	19.1	62.70	2 01	1.30	235	8.0	3.3	3.5	yellow/brown	0 / out of park	Howry Creek
Billy	241	100.97	3 50	2 01	231	10.3	4.2	4.5	yellow/brown	0 / out of park	Mahzenazing
Bizhiw	2.1	10.68	090	1.17	285	8.6	5.1	7.0 (bottom)	plue/green	0 / 0	Baie Fine
Bodina	35.2	63.72	3 29	1.56	205	3.9	8:1	1.8	yellow/brown	0 / 2	McGregor Bay
Boundary:	93.3	340.97	11.50	3.36	222	9.8	3.7	3.6	blue/green	0/2	McGregor Bay
Burmyrabbit	12.7	141.59	2 0 2	1.60	246	36.0	11.1	16.0	blue/green	0 / 2	Mahzenazing
Burke	8.4	43.94	2 0 2	197	304	15.6	5.2	3.8	błue/green	0 / 0	Chikenishing
Cenis	27.4	40.03	3 59	#.T	181	2.8	1.5	1.2	yellow/brown	0 / 0	McGregor Bay
Carlyle	156.7	890 81•	17.10	3.85	206	14.6	5.7	4.0	yellow/brown	37 / 6	Mahzenazing
Casson	15.0	141.45	2 24	1.63	218	6.71	9.4	7.3	upad/anjq	0 / out of park	Howny Creek
Cat	16.4	126.40	5.29	2.19	222	8.6	2.7	3.3	plue/green	1/1	Howny Creek
Care	12.4	26.42*	2.00	1.60	185	3.4*	2.1	3.3	yellow/brown	0/2	Baic Fine
Chain	10.9	29.49	281	2.40	226	10.5	2.7	2.5	yellow/brown	0 / 0	Mahzenazing
Clearsilver	30.9	162.85	3.92	1.99	722	13.7•	5.3	9.5	blue/green	0 / 1	Mahzenazing

were digitized and fitted to OBM lake outlines are indicated by *. Maximum depths obtained from Ontario Lake Survey Database indicated by * Physical characteristics of biological survey lakes. Volumes obtained from old lake survey contour maps that Table 9 (cont.).

Lake	Surface Area (ha)	Volume (10°m²)	Perimeter (km)	Shoreline develop. factor	Elevation (m)	Maximum depth (m)	Mean depth (m)	Secchi depth (m)	Water colour	Number of cottages/ campsites	Watershed
Спапретту Вод	18.5	19.15	247	1.62	205	\$	-	2.1	yellow/brown	0 / 0	Chikanishing
Crater East	2.2	5.3	0.62	1.18	205	4.2	2.4	4.1	yellow/brown	0 / 0	McGregor Bay
Crater West	0.8	2.99	0.36	1.14	285	1.1	3.7	2	yellow/brown	0 / 0	McGregor Bay
Cuckoo	24.6	17.146	3.62	2.06	236	14	3.9	4.5	yellow/brown	0 / out of purk	Howny Creek
David	406.3	2856.61*	32.52	4.55	238	24.4*	7	10.2	blue/green	51/2	Mahzenazing
Deacon	36.9	139.47	3.42	1.59	22.4	1,1	3.8	3.8	yellow/brown	0 / 2	Mahzenazing
de Lamorandiere	5.9	11.55	1.69	1.96	286	7.6*	2	\$	blue/green	0/0	Chikanishing
East Howry	7.17	427.82	7.28	2.43	234	20	9	4	yellow/brown	2 / out of park	Howny Creek
Fish	115.4	437.27*	1244	3.27	212	8.5●	3.8	4.5	yellow/brown	0/2	Howry Creek
Fox	42.3	197.32	3.83	1.66	226	10	4.7	3	yellow/brown	0 / 1	Mahzenazing
Frank	15.6	39.16	3.46	247	236	9.8	2.5	2.5	yellow/brown	0/0	Mahzenazing
Freeland	47.7	50.5	6.04	2.46	161	3.5	1.1	3	blue/green	0/0	Chilemishing
Gail	50.9	89.76	284	1.75	255	16.8	4.3	10.5	blue/green	0 / 1	Howny Creek
Germ	30.7	250.23*	5.59	2.85	205	19.2•	8.2	4	yellow/brown	0/0	Howny Creek
George	188.5	3085.89*	13.46	2.76	189	36.6*	16.4	6	blue/green	0/ S+campground	Chilemishing
Goose	10.1	фит оп	2.04	18.1	214	2.0 (best estimate)	dru ou	2.0 (bottom)	yellow/brown	0/0	Howny Creek
Goschen	24.1	69.46	26	1.49	235	5.6	29	3	yellow/brown	0/0	Mahzenazing
Grace	47.2	291.09	3.66	232	1251	17.2	6.2	11.8	blue/green	0/2	Grace
Great Mountain	198.3	1970,29*	15.77	3.16	231	37.5	6'6	7	bhe/green	2/3	Howny Creek
Grey	31.8	1.171	6.27	2.8	228	11.8	5.4	\$	vellos/brown	0 / out of park	Mahzenazing

Table 9 (cont.).

were digitized and fitted to OBM lake outlines are indicated by *. Maximum depths obtained from Ontario Lake Physical characteristics of biological survey lakes. Volumes obtained from old lake survey contour maps that Survey Database indicated by *.

Lake	Surface Area (ha)	Volume (10°m³)	Perimeter (km)	Shoreline develop. factor	Elevation (m)	Maximum depth (m)	Mean depth (m)	Secchi depth (m)	Water colour	Number of cottages/campsites	Watershed
Grow	13.1	69.39	2.2	1.72	712	6	5.3	3.7	yellow/brown	0 / 1	Howny Creek
Harwood	32	166.5	5.72	2 85	222	12	5.2	\$	yellow/brown	0 / 2	Howny Creek
Hamy	133.6	597.11	12.96	3.17	529	12.5	4.5	2.5	yellow/brown	0 / 4	Mahzenazing
Heaven	1.7	9.31	0.55	1.19	305	17.8	5.5	E	yellow/brown	1 / 0	Chileanishing
Helen	82.6	1692.01*	6.3	961	187	41.2*	20.5	5.8	yellow/brown	1/3	McGregor Bay
Hemlock	3.3	8.48	0.75	1.16	225	4.5	2.6	4.5 (bottom)	blue/green	0/0	Chileanishing
Номъу	118.1	1417.53*	10.83	2.81	861	27.5•	12.0	4	yellow/brown	1/2	Howry Creek
Ishmaci	72.8	820.27*	7.78	2.57	\$81	-861	11.3	4.5	yellow/brown	1/3	McGregor Bay
Johnnie	342.3	3417.66*	33.81	\$ 16	206	33.6*	0.01	5.5	yellow/brown	11+11odge / 7	Mahzenazing
Kakakise	1126	1524,40*	10.77	286	681	30 5€	13.5	6.5	blue/green	1/3	Chikanishing
Kidney	2.9	no map	0.75	1.24	222	1.8	по твр	1.8 (bottom)	colouriess	0/0	Chikanishing
Killamey	326.5	3535.30*	28 88	4.51	200	61.0	10.8	9.6	plue/green	0 / 11	Chilcanishing
ake of the Woods	9.7	23.77	19	1.72	215	0.9	2.5	6.0 (bottom)	yellow/brown	0 / out of park	Mahzenazing
Leech	92.2	223 02	14.42	424	122	7.9	2.4	3.5	yellow/brown	2/0	Howny Creek
Litle Bell	21.1	12.3	3.65	2.24	228	7.2	4.5	2.5	yellow/brown	1/0	Mahzenazing
Little Leech	8.6	51.10	1 74	1.57	222	6.0	5.2	3.3	yellow/brown	0 / out of park	Howny Creek
Little Mink	18.7	88.40	2.40	1.57	218	7.7	4.7	5.6	bluc/green	0/0	Howny Creek
Little Mountain	23.6 .	269.71	2.24 .	1.3	234	25.0	11.4 .	9.5 .	blue/green	0 / 1.	Howny Creek
Little Sheguiandah	4.5	7,43*	11.1	1,48	190	2.7	1.7	2.8	colourless	1/0	Chilcanishing
Little Superior	13.9	179.28	1.87	1.42	275	33.6*	12.9	23.9	blue/green	0 / 1	Chikanishing
Log Boom	6.9	23.55	1.58	07.1	214	5.5	3.4	4.2	yellow/brown	0/0	Mahzenazing

Physical characteristics of biological survey lakes. Volumes obtained from old lake survey contour maps that were digitized and fitted to OBM lake outlines are indicated by *. Maximum depths obtained from Ontario Lake Survey Database indicated by *. Table 9 (cont.).

Watershed	McGregor Bay	Chikanishing	Howny Creek	Buic Fine	Howny Creek	Howny Creek	Chilemishing	Baie Fine	Chikanishing	McGregor Bay	Baie Fine	Mahzenazing	Mahzenazing	Chikanishing	McGregor Bay	Howny Creek	Chikanishing	Howny Creek	Mahzenazing	Chikanishing
Number of cottages/campaites	1/0	0/2	0/0	0/2	0/3	0/3	0/3	8 / 0	0/0	0 / 0	0/0	1 / out of park	0/0	0 / 1	0/0	0 / 1	0 / 0	0 / 0	0/2	0 / 1
Water colour	yellow/brown	Muc/green	yellow/brown	blue/green	yellow/brown	blue/green	blue/green	blue/green	blue/green	blue/green	blue/green	yellow/brown	yellow/brown	blue/green	blue/green	yellow/brown	colouriess	rwordwollar	blue/green	blue/green
Secchi depth (m)	7.9	7.2	3.2	10.9	\$	23	10.5	91	13	6.3	6.4(bottom)	5.0	8.1	21.7	26.0	5.7	4	1.5	10.5	7
Nfean depth (m)	14.4	6	1.7	9	1.9	19.2	15.1	12.0	6.2	2.2	3.9	12.9	2.6	66	6,1	3.3	2.7	4.0	43	8.7
Maximum depth (m)	28.4*	21.8	\$	12.2*	64	54.9*	33.6•	39.7*	169*	6.4*	6.4	30.5*	9.1	28.7	46.2	14.6	10.1	7	18*	15.9•
Elevation (m)	182	241	222	189	197	267	205	205	306	196	225	227	226	258	321	215	312	208	214	217
Shoreline develop	195	1.41	2 32	2.14	4.18	292	2.29	2.37	1.4	1.54	1.17	2.37	2.53	1.67	1.40	2.84	1.48	2.59	2.31	1.59
Perimeter (km)	4.01	2,43	455	4.28	143	1671	6.47	14	1.64	1.88	190	896	\$ 05	2.05	197	99	880	4.15	\$0.9	292
Volume (10°m³)	485.13*	215.17	52.51	190.15	178.09	4992.27*	957.20*	3340.77*	68.12*	26.21	10 21	1703.65	83.23	118.76	80'96	141.1	7,540	\$0.72	234.81*	187.26
Surface Area (ha)	33.8	23.8	30.5	31.7	93	260.5	63.3	278.9	11	11.9	2.6	132.4	32	12.0	15.7	6.25	2.8	20.4	5.42	21.6
Lake	Low	Lumsden	Mink	Muriel	Murray	Nellie (includes Carmichael)	Norway	0.S.A.	Partridge	Patten	Pearl	Peter	Pike	Proulx	Quartzile	Rocky.	Roque	Round Otter	RuthRoy	Sandy

Physical characteristics of biological survey lakes. Volumes obtained from old lake survey contour maps that were digitized and fitted to OBM lake outlines are indicated by *. Maximum depths obtained from Ontario Lake Survey Database indicated by * . Table 9 (cont.).

										,	
	Surface Area (ha)	Volume (10°m²)	Penimeter (km)	Shoreline develop. factor	Elevation (m)	Maximum depth (m)	Mean depth (m)	Secchi depth (m)	Water colour	Number of cottages/campsites	Watershed
ļļ .	9.4	7.55	2.42	2.23	861	4.1	8.0	1.5	yellow/brown	1 / 0	Chikanishing
	53	\$0.69	EII	136	290	21.8	9.6	20.6	blue/green	0 / 0	Chikanishing
ĺ	6.2	58.6	1.65	1.87	295	\$	9.1	3.8	yellow/brown	0 / 2	Mahzenazing
ı	8.3	•8t-6	2.52	2.47	262	4.9*	1.1	3.5	colourless	0/0	Chikanishing
ı	12.3	58.06	219	1.78	275	203	8'17	9.5	blue/green	0 / 0	Buie Fine
	3,4	32.51	64.0	12.1	325	16.6	9.6	11.5	blue/green	0 / 0	Buie Fine
	11.5	36.03	1.69	141	202	8.0•	3.1	2.5	yellow/brown	1/0	Mahzenazing
1	810.1	*T1 27711	88.98	882	\$61	\$1.9*	14.5	6.5	blue/green	61 / 01	McGregor Bay
	4,7	\$7.11*	0.83	80.1	255	21.4*	12.2	19	blue/green	0 / 1	Buie Fine
	12.8	26.21	2.13	1 68	226	\$	2	2.3	yellow/brown	0 / out of park	Howry Creek
	17.5	42.29	2 38	1.61	226	5.5	2.4	2.2	yellow/brown	0 / out of park	Howny Creek
	10.4	12.64	1.62	1.42	229	11.9	89.	1.2	yellow/brown	0 / out of park	Howry Creek
	20.7	69.43	3:45	2.28	215	1.9	3.8	6.5	yellow/brown	0 / out of purk	Mahzenazing
	5.4	24.80	† ! !		280	13.8	4.6	6.4	blue/green	0 / 0	Howry Creek
	147	28.96	232	171	922	4.9	2.0	2.8	yellow/brown	0 / 1	Howny Creek
	852	639.01	8.79	2 68	62.2	61	7.5	7.8	blue/green	0/3	Howny Creek
	5.2	8.87	1.24	1 53	902	4.2	1.7	1.5	yellow/brown	0/2	Chikanishing
	12.8	245,270	1.71	1.35	275	42.7*	19.2	22	blue/green	0/0	Chilcanishing
	39.1	520.22	5.64	2.55	861	20.4	13.3	4.5	yellow/brown	0 / 1	McGregor Bay
	2.4	8.57	0.63	1.15	335	5.8	3.6	2.3	yellow/brown	0 / 0	Mahzenazing

Physical characteristics of biological survey lakes. Volumes obtained from old lake survey contour maps that were digitized and fitted to OBM lake outlines are indicated by *. Maximum depths obtained from Ontario Lake Survey Database indicated by *. Table 9 (cont.).

Watershed	Mahzenazing	Mahzenazing	McGregor Bay	Chikenishing	Chikanishing	Chikanishing	Chikanishing	Chilcanishing	McGregor Bay	Howny Creek	McGregor Bay	Chikanishing	Chikanishing	Chikanishing	Chilcanishing	McGregor Bay	McGregor Bay
Number of cottages/campailes	0/0	0/0	0 / 0	0 / 0	0/0	0 / 0	0/0	0/0	0 / 1	0 / 0	0 / 1	0/0	0/0	0 / 0	0 / 1	0 / 0	0 / 0
Water colour	yellow/brown	yellow/brown	blue/green	colourless	blue/green	blue/green	blue/green	blue/green	nwordwollar	yellow/brown	yellow/brown	yellow/brown	plue/green	blue/green	blue/green	yellow/brown	yellow/brown
Secchi depth (m)	1.8	2.2 (bottom)	11.8 (bottom)	1.5 (bottom)	8.1 (bottom)	5.6 (bottom)	8.3	5.2 (bottom)	\$	1.1	2.5	2.2	4.7	\$	4.5 (bottom)	1.8	2.6
Mean depth (m)	5.2	0.5	5.8	no map	3.8	2.6	7.8	2.1	7.1	1.1	10.6	0.7	2.1	3.1	2.5	6.2	3.5
Maximum depth (m)	9.5	2.2	120	1.5	8.1	9:9	18.8	5.4	16	2.7	24.4	2.5	6.4	11.7	4.6	15.1	6.5
Elevation (m)	235	335	3-48	355	328	3-10	337	309	205	235	195	285	309	315	274	199	182
Shoreline develop. factor	1.20	1.56	1.52	1.31	1.75	1.43	1.04	12	1 69	1.17	198	2.26	25'1	1.60	1.62	1.74	1.16
Perimeter (km)	0.71	0.63	0.93	0.51	1.09	0.8	0.57	0 67	2.52	0.87	4.89	1.52	60	0.88	0.85	2.12	171
Volume (10°m³)	14.59	0.70	17.30	no map	11.87	6.51	18.79	5.21	125.18	4.75	51415*	2.62	87'5	6.19	5.51	72 88	30.63
Surface Area (ha)	2.8	1.3	3	1.2	3.1	2.5	24	2.5	17.6	मि ए	48.5	3.6	26	2	2.2	11.8	8.7
Lake	L N	III-)	H24	425	н27	#28	#29	#30	я37А	F45	я59	#64	#65	и66	и69	# 74	#76

Status of Fish Communities

A total of 57,750 fish representing 28 species were caught during the survey (Tables 10 and 11). The number of species caught per lake ranged from 0 to 14, with a mean of 4.1 and a median of 3.0 (Figure 17). Among the major basins, the median species richness varied from 0 for Chikanishing to 6.5 for Howry Creek (Table 12). In the subset of 119 lakes that we surveyed, 43 lakes (pH 4.3-5.9) or 36% of the total are fishless and 23 of these are located within the Chikanishing drainage basin (Figure 18). All of the fishless lakes have watersheds that are underlain primarily by the Lorrain and Bar River Formations.

Two fish species were caught in over 3/4 of the 76 surveyed lakes that supported fish species: pumpkinseed (caught in 81.6% of the lakes) and yellow perch (caught in 78.9% of the lakes). Those two species accounted for 63% of the total catch by number. Ten species were caught in at least 1/3 of the lakes: bluegill, brown bullhead, golden shiner, largemouth bass, northern pike, pumpkinseed, rock bass, smallmouth bass, white sucker and yellow perch. These ten species accounted for 90.6% of the total catch by number.

The most acid-tolerant species, as suggested by their occurrence in lakes with pH<5.0, were bluegill, brook trout, brown bullhead, golden shiner, pumpkinseed, yellow perch. Species found only in lakes above pH 6.0 were slimy sculpin, johnnie darter, and some cyprinids.

Twenty-seven of the lakes have been stocked with fish (Table 13). Most of the stocking was done in the 1950's and 1960's, when many of the lakes were acidifying, suggesting that the action was taken to bolster declining fish stocks. Attempts to introduce non-native species (rainbow trout, pink salmon) were unsuccessful. There is a record of muskellunge being stocked in George Lake, but local residents do not recall the species being native to that lake (B. Burke pers. comm.). The more recent stockings in the 1980's and 1990's took place following water quality improvements and were done in an effort to reintroduce extirpated species.

Brook trout have been stocked in Sudbury District for several decades, since at least 1920 and the natural distribution of the species prior to that time is unknown (Dolson and Liimatainen 1989). During the survey brook trout were captured in both Grey and Turbid Lakes, but the populations in these connnected lakes may have been established by the stocking of Grey Lake in 1957 (Table 13). Both lakes are currently too acidic (pH \leq 5.0) to support reproduction by the species (Beggs and Gunn 1986). However, the toxicity may be somewhat ameliorated by the moderately high DOC levels (3.2-3.4 mg/L) and the olivine diabase dykes that transect both lakes may create refugia of less acidic water. A self-sustaining brook trout population existed in the Chikanishing River until the late 1980's, but its origins are also uncertain.

Stocking of both largemouth bass and smallmouth bass has occured in 18 lakes (Table 13), but both species are native to the area. Smallmouth bass originally colonized during the late Pleistocene glaciation about 10,000 years ago when the water level in the Sudbury region was about 75 - 90 m higher than at present (Robbins and MacCrimmon 1974). Smallmouth bass

Table 10. List of fish species with pH range of lakes and frequency of occurence. pH range and number (%) of lakes was derived from a list of species obtained by all surveys done in these lakes during the 1990's. The total number captured refers only to the 1995-1997 survey.

Blackchin shiner (Notropis heterodon) Blacknose shiner (Notropis heterolepis) Bluegill (Lepomis macrochirus) Bluegill (Lepomis macrochirus) Bluentnose minnow (Pimephales notatus) Brook stickleback (Culaca inconstans) Brook trout (Salvelinus fontinalis) Brown bullhead (Amieurus nebulosus) Central mudminnow (Umbra limi) Cisco (Coregonus artedii) Cisco (Coregonus artedii) Fathead minnow (Pimephales promelas) Finescale dace (Phoxinus neoraeus) Golden shiner (Notemigonus crysoleucas) Lowa darter (Etheostoma exile) Lake trout (Salvelinus namaycush) Lake whitefish (Coregonus clupeaformis) Largemouth bass (Micropterus salmoides) Mimic shiner (Notropis volucellus) Northern pike (Esox jucius) 5.5 - 7.0	Number of lakes I 1 32 23 5 2 35 12 21 5 2	1.3 1.3 1.3 42.1 30.3 6.6 2.6 46.1 15.8 27.6 6.6 2.6 35.5	2 1 6,803 548 282 3 764 677 1,622 31 included in Northern redbelly dace 3,582
Blacknose shiner (Notropis heterolepis) Bluegill (Lepomis macrochirus) 4.7 - 7.6 Bluntnose minnow (Pimephales notatus) 5.8 - 7.2 Brook stickleback (Culaca inconstans) 5.5 - 6.1 Brown bullhead (Amieurus nebulosus) Central mudminnow (Umbra limi) Central mudminnow (Umbra limi) Cisco (Coregonus artedii) Fathead minnow (Pimephales promelas) Finescale dace (Phoxinus neogacus) Golden shiner (Notemigonus crysoleucas) Lowa darter (Etheostoma nigrum) Lake trout (Salvelinus namaycush) Lake whitefish (Coregonus clupeaformis) Largemouth bass (Micropterus salmoides) 5.4 - 7.2 Mimic shiner (Notropis volucellus) 6.4	1 32 23 5 2 35 12 21 5 2	1.3 42.1 30.3 6.6 2.6 46.1 15.8 27.6 6.6 2.6	1 6,803 548 282 3 764 677 1,622 31 included in Northern redbelly dace
Bluegill (Lepomis macrochirus) 4.7 - 7.6 Bluntnose minnow (Pimephales notatus) 5.8 - 7.2 Brook stickleback (Culaca inconstans) 5.5 - 6.1 Brook trout (Salvelinus fontinalis) 4.9 - 5.0 Brown bullhead (Amieurus nebulosus) 4.9 - 7.1 Central mudminnow (Umbra limi) 5.0 - 7.0 Cisco (Coregonus artedii) 5.4 - 7.2 Fathead minnow (Pimephales promelas) 5.5 - 6.6 Finescale dace (Phoxinus neorgaeus) 6.0 - 6.1 Golden shiner (Notemigonus crysoleucas) 4.9 - 7.0 Lowa darter (Etheostoma exile) 5.6 - 7.2 Johnnie darter (Etheostoma nigrum) 6.1 - 7.2 Lake trout (Salvelinus namaycush) 5.6 - 7.2 Lake whitefish (Coregonus clupeaformis) 5.6 - 5.9 Largemouth bass (Micropterus salmoides) 5.4 - 7.2 Mimic shiner (Notropis volucellus) 6.4	32 23 5 2 35 12 21 5 2	42.1 30.3 6.6 2.6 46.1 15.8 27.6 6.6 2.6	6,803 548 282 3 764 677 1,622 31 included in Northern redbelly dace
Bluntnose minnow (Pimephales notatus) Brook stickleback (Culaea inconstans) Brook trout (Salvelinus fontinalis) Brown bullhead (Amieurus nebulosus) Central mudminnow (Umbra limi) Cisco (Coregonus artedii) Fathead minnow (Pimephales promelas) Finescale dace (Phoxinus neonaeus) Golden shiner (Notemigonus crysoleucas) Johnnie darter (Etheostoma nigrum) Lake trout (Salvelinus namaycush) Lake whitefish (Coregonus clupeaformis) Largemouth bass (Micropterus salmoides) Mimic shiner (Notropis volucellus) 6.4	23 5 2 35 12 21 5 2	30.3 6.6 2.6 46.1 15.8 27.6 6.6	548 282 3 764 677 1,622 31 included in Northern redbelly dace
Brook stickleback (Culaca inconstans) Brook trout (Salvelinus fontinalis) Brown bullhead (Amieurus nebulosus) Central mudminnow (Umbra limi) Cisco (Coregonus artedii) 5.4 - 7.2 Fathead minnow (Pimephales promelas) Finescale dace (Phoxinus neogaeus) Colden shiner (Notemigonus crysoleucas) Johnnie darter (Etheostoma exile) Lake trout (Salvelinus namayoush) Lake whitefish (Coregonus clupeaformis) Largemouth bass (Micropterus salmoides) Mimic shiner (Notropis volucellus) 6.4	5 2 35 12 21 5 2	6.6 2.6 46.1 15.8 27.6 6.6	3 764 677 1,622 31 included in Northern redbelly dace
Brook trout (Salvelinus fontinalis) Brown bullhead (Amieurus nebulosus) Central mudminnow (Umbra limi) Cisco (Coregonus artedii) 5.0 - 7.0 Cisco (Coregonus artedii) 5.4 - 7.2 Fathead minnow (Pimephales promelas) Finescale dace (Phoxinus neogacus) Golden shiner (Notemigonus crysoleucas) Lowa darter (Etheostoma exile) Johnnie darter (Etheostoma nigrum) Lake trout (Salvelinus namaycush) Lake whitefish (Coregonus clupeaformis) Largemouth bass (Micropterus salmoides) Mimic shiner (Notropis volucellus) 6.4	2 35 12 21 5 2	2.6 46.1 15.8 27.6 6.6	3 764 677 1,622 31 included in Northern redbelly dace
Brown bullhead (Amieurus nebuiosus) Central mudminnow (Umbra limi) 5.0 - 7.0 Cisco (Coregonus artedii) 5.4 - 7.2 Fathead minnow (Pimephales promelas) Finescale dace (Phoxinus neogacus) Golden shiner (Notemigonus crysoleucas) Lowa darter (Etheostoma exile) Johnnie darter (Etheostoma nigrum) Lake trout (Salvelinus namaycush) Lake whitefish (Coregonus clupeaformis) Largemouth bass (Micropterus salmoides) Mimic shiner (Notropis volucellus) 6.4	35 12 21 5 2	46.1 15.8 27.6 6.6	764 677 1,622 31 included in Northern redbelly dace
Central mudminnow (Umbra limi) Cisco (Coregonus artedii) 5.4 - 7.2 Fathead minnow (Pimephales prometas) 5.5 - 6.6 Finescale dace (Phoxinus neogaeus) Golden shiner (Notemigonus crysoleucas) Lowa darter (Etheostoma exile) Johnnie darter (Etheostoma nigrum) Lake trout (Salvelinus namaycush) Lake whitefish (Coregonus clupeaformis) Largemouth bass (Micropterus salmoides) Mimic shiner (Notropis volucellus) 6.4	12 21 5 2	15.8 27.6 6.6 2.6	1,622 31 included in Northern redbelly dace
Cisco (Coregonus artedii) 5.4 - 7.2 Fathead minnow (Pimephales promelas) 5.5 - 6.6 Finescale dace (Phoxinus neogaeus) 6.0 - 6.1 Golden shiner (Notemigonus crysoleucas) 1.0 - 7.0 Iowa darter (Etheostoma exile) 5.6 - 7.2 Johnnie darter (Etheostoma nigrum) 6.1 - 7.2 Lake trout (Salvelinus namayeush) 5.6 - 7.2 Lake whitefish (Coregonus clupeaformis) Largemouth bass (Micropterus salmoides) 5.4 - 7.2 Mimic shiner (Notropis volucellus) 6.4	21 5 2	27.6	1,622 31 included in Northern redbelly dace
Fathead minnow (Pimephales promelas) Finescale dace (Phoxinus neogacus) Golden shiner (Notemigonus crysoleucas) Iowa darter (Etheostoma exile) Johnnie darter (Etheostoma nigrum) Lake trout (Salvelinus namavcush) Lake whitefish (Coregonus clupeaformis) Largemouth bass (Micropterus salmoides) Mimic shiner (Notropis volucellus) 5.5 - 6.6 4.9 - 7.0 6.1 - 7.2 5.6 - 7.2 Lake whitefish (Coregonus clupeaformis) 5.6 - 5.9 Largemouth bass (Micropterus salmoides) 6.4	5 2 27	6.6	31 included in Northern redbelly dace
Finescale dace (Phoxinus neogaeus) Golden shiner (Notemigonus crysoleucas) Lowa darter (Etheostoma exile) Johnnie darter (Etheostoma nigrum) Lake trout (Salvelinus namaycush) Lake whitefish (Coregonus clupeaformis) Largemouth bass (Micropterus salmoides) Mimic shiner (Notropis volucellus) 6.0 - 6.1 4.9 - 7.0 6.1 - 7.2 5.6 - 7.2 Lake whitefish (Coregonus clupeaformis) 5.6 - 5.9 Largemouth bass (Micropterus salmoides) 6.4	27	2.6	included in Northern redbelly dace
Golden shiner (Notemigonus crysoleucas) Iowa darter (Etheostoma exile) Johnnie darter (Etheostoma nigrum) Lake trout (Salvelinus namaycush) Lake whitefish (Coregonus clupeaformis) Largemouth bass (Micropterus salmoides) Mimic shiner (Notropis volucellus) 4.9 - 7.0 4.9 - 7.0 5.6 - 7.2 5.6 - 7.2 Lake whitefish (Coregonus clupeaformis) 5.4 - 7.2	27		redbelly dace
Iowa darter (Etheostoma exile) 5.6 - 7.2 Johnnie darter (Etheostoma nigrum) 6.1 - 7.2 Lake trout (Salvelinus namayoush) 5.6 - 7.2 Lake whitefish (Coregonus clupeaformis) 5.6 - 5.9 Largemouth bass (Micropterus salmoides) 5.4 - 7.2 Mimic shiner (Notropis volucellus) 6.4		35.5	3,582
Johnnie darter (Etheostoma nigrum) 6.1 - 7.2 Lake trout (Salvelinus namavcush) 5.6 - 7.2 Lake whitefish (Coregonus clupeaformis) 5.6 - 5.9 Largemouth bass (Micropterus salmoides) 5.4 - 7.2 Mimic shiner (Notropis volucellus) 6.4			L
Lake trout (Salvelinus namaycush) 5.6 - 7.2 Lake whitefish (Coregonus clupeaformis) 5.6 - 5.9 Largemouth bass (Micropterus salmoides) 5.4 - 7.2 Mimic shiner (Notropis volucellus) 6.4	20	26.3	40
Lake whitefish (Coregonus clupeaformis) 5.6 - 5.9 Largemouth bass (Micropterus salmoides) 5.4 - 7.2 Mimic shiner (Notropis volucellus) 6.4	3	3.9	3
Largemouth bass (Micropterus salmoides) 5.4 - 7.2 Mimic shiner (Notropis volucellus) 6.4	11	14.5	55
Mimic shiner (Notropis volucellus) 6.4	3	3.9	0
	26	34.2	288
Northern pike (Esox lucius) 5.5 - 7.0	1	1.3	5
	32	42.1	403
Northern redbelly dace (Phoxinus eos) 5.5 - 7.1	8	10.5	2,165
Pumpkinseed (<u>Lepomis gibbosus</u>) 4.7 - 7.6	62	81.6	17,158
Rock bass (Ambloplites rupestris) 5.7 - 7.2	37	48.7	2,738
Rainbow smelt (Osmerus mordax) 7.2	1	1.3	0
Slimy sculpin (Cottus cognatus) 6.5 - 7.2	3	3.9	2
Smallmouth bass (Micropterus dolomieui) 5.6 - 6.6	26	34.2	364
Walleye (Stizostedion vitreum) 5.8 - 6.4	2	2.6	2
White sucker (Catostomus commersoni) 5.5 - 7.1	30	39.5	858
Yellow perch (Perca flavescens) 4.9 - 7.6	60	78.9	19,354
TOTAL 4.7 - 7.6	76	100	57,750

List of fish species by lake. An • indicates the species was captured in the 1990's during other studies. Species captured during sweepnetting or in crayfish traps indicated by #. Species captured by angling indicated by "a". Table 11.

× ×. × × × × × × × × × × × × * × × ī 1 × × × × × . 2 × × 4 × × × × × × × × × × × × × × × × $\boldsymbol{\asymp}$ Z × × × × × × 2 × × ı × 1 $\boldsymbol{\times}$ * × × ÷ 2 * ÷ 2 × × × × Z. 4 × \times × × × × × × 3 4 × × × Ð × 8 × \times × × × × 2 × I × × × × × × 3 × × × × 1 0 -Φ m Φ 13 0 7 0 0 ۲-Ξ 9 ~ 0 0 9 m 土 Chafts (4.7) Amthogaming (5.1) Bunngrabbit (4.8) Casson (7.6-1997) Lake (1996 pH) A.Y. Jackson (3.8) Arrist (5.7 - 1997) Boundary (5.2) Bodins (6.6) Cartyle (5.9) Caw (5.6) Butsum (6.1) Betty (7,0) Burke (S.t) Camb (6.4) Benver (6.0) Billy (4.7) Bizhiw (4.5) Car (6.4) Acid (5.0) Bell (5.9)

best blackehin shiner; bns-blacknose shiner; blu-bluegill; bnm bluntnose minnow; bs-brook stickleback; bt-brook trout; bb-brook trout; bb-brook stickleback; br-brook trout; bb-brook shiner; br-brook shiner; br-pohnny darter; blu-bluegill; bnm bluntnose minnow; fsd-finescale date; sg-golden shiner; id-iowa darter; pl-johnny darter; lt-lake rout; lw-lake whitefish; lmb-largemouth bass; ms-minic shiner; np northern pike; ard-northern redbelly date; pum-pumpkinseed; rb-rock bass; rs = rainbow smelt; ss slimy sculpin; smb-smallmouth bass; wal-walleye; ws=white sucker; yp-yellow perch

List of fish species by lake. An • indicates the species was captured in the 1990's during other studies. Species captured during sweepnetting or in crayfish traps indicated by #. Species captured by angling indicated by "a". Table 11 (cont.).

(18% (18%) rep)	Clearsilver (4.9)	Crusterry Bog (6.1)	Crater East (5.9)	Creter West (5.4)	Cucton(6.6)	David (5.0)	Descon (5.9)	del.amerindlere(5.0)	East Howry (7.1)	Flab (5.7)	Fex (6.2)	Frank (6.2)	Freeland (5.5)	Cell (4.6)	Ce= (6.1)	Courge (3.8)	Couse (6.2)	Coachen (6.2)	Grace (3.1)	The second second second
A.	٥	\$			9	_	10	0	88	10	7	\$	10	0	01	=	9	7	12	H
2	H			\vdash	_	-						\vdash		_	_	\vdash				L
#	_		_		×	H	×		×	×							×			L
1			_	\vdash	_	\vdash	×		×		×	<u> </u>	_		×	×				L
· I	L	×		<u> </u>				-					×		_	Χĸ				L
3		<u> </u>	_	_				_			<u> </u>				_			<u> </u>		L
2	_	×	_	<u> </u>	×		×	_	×	_		×	×		×	×	×		<u> </u>	L
8				_					<u> </u>		×		×							L
ð			_	_	_		_		×	_		_			×	×		_		L
Į	_							_					×					L		L
1			<u>_</u>	_	_				_	_			_	_		_	<u>_</u>	_		L
a.	L	×	_				×	L	_	×	L	×	×				_	×		
3	L	×	L	L				L.		₹						_	×			L
2					$oxed{oxed}$			L	_			_	L		×		_			
×	L		L	L				L	_			L	_			×	<u> </u>	_		L
1	L				L											×			L	
1			L	L	×		×	L	×	×	×		L				<u> </u>	×		L
1	L			L															L	L
1							×			×	×	L	×		×	×	×	×		
I		×											×							
1							×		×	×	×	×	×		×	×	×	×	×	
2				Г			×			×	×	Г		Г	×	×		×		Ī
32																Γ		Г		T
4				Γ	Π			Γ	Γ	Γ										T
1				Γ	×	Γ				×					×					T
7			\vdash					1	Г				Г		\vdash	\vdash		_		t
F			T	Т	×	<u> </u>	×	Г	×	×		×	×	Г	×	×		×	Г	t
-	ì			П	×	×	×	П	×	×	×	×	×		×	×	×	×		Γ

was remained mines, was varied and in the first of the fi

Table 11 (cont.).

List of fish species by lake. An * indicates the species was captured in the 1990's during other studies. Species captured during sweepnetting or in crayfish traps indicated by #. Species captured by angling indicated by "a".

(Late acco) alan	#	.1	3	1	2	3	2	8	18	1	3	8	3	2	ž	1	1		F	1	2	2		1	Ē	r F
Grey (4.9)	3		×			×									ř					×						
Graw (6.6)	9	L	×								Т	_	_							×	×			×	\dashv	×
Hasmood (6.4)	<u>_</u>	\vdash	$oxed{oxed}$							\vdash		\vdash								×	×		\dashv	×	\dashv	\dashv
Harry (6.3)	6	↓_	_	×				×				×			Н	×		×		×	×			×		_
Heaven (4.8)	-	igdash	┞-	igspace				Г	Г						-					\Box			\dashv	_	\dashv	\dashv
Helen (63)	=		×	×			×		×				×π		×			_		×	×	\neg	×	×	1	7
Hembotk (4.7)	-	_	_	L														_	_			\neg	\dashv	7	\dashv	\dashv
Howay (6.3)	٥	\vdash	×	$oxed{oxed}$	_		×		×									×		×	×		\neg	×		×
Lybrand (6.5)		_	×	×		_			×			\vdash	×		×			×		×	×	\neg		×		\neg
Johnnie (5.6)	=	\vdash	<u> </u>	igspace	_		×		×			×	-		×	×.		×		×	×		\dashv	×	\neg	×
Kakakise (6.3)	2	-	lacksquare	×				*X	*	×		×	×		•x		-	×	_	×	×	\neg		×	\dashv	┪
Kidney (5.3)	0	-	<u> </u>	\vdash	_									H									\dashv		\dashv	\dashv
Killarney (5.1)	4	\vdash	\vdash	_		_	×	×												×			7	一	\dashv	7
Labor the Woods (4.5)	2	-	×	<u> </u>																×						
Leech (6.9 - 1997)	~	\vdash			<u> </u>		×						×		\dashv	\dashv	-		_	×	×			×	\dashv	7
Linde Bell (4.6)	0		_									\exists		\dashv	_	\dashv	\dashv	\dashv	\dashv	\dashv			\dashv	┪	\dashv	\dashv
Lattle Leach (7.1 -1997)	4		×										ES SE			\dashv		_	×	×			\dashv	\dashv	\dashv	\dashv
Little Mink (6.7)	٥	_	×				×					×		\dashv	\dashv		×	×	4	×	×				1	×
Little Monotain(5,1)	0	_															_	**Little Measural (S.1) 0		_	_				\exists	

bes blackehin shiner; bus-blacknose shiner; blu-bluepugili; bma-blunnose minnow; bs-brook stickleback; bt-brook frout; bb-brown bullhead; cm 'central mudminnow; cis 'cisco; fhm-fathead minnow; fsd-finescale dace; gs-golden shiner; id-iowa darter; jd-johnny darter; It-lake trout; lw-lake whitefish; Imb-largemouth bass; ms-mimic shiner; np-morthern pike; md-morthern redbelly dace; pum-pumpkinseed; rb-rock bass; rs = rainbow smelt; ss-slimy sculpin; smb-smallmouth bass; wal-walleye; ws-white sucker; yp-yellow perch

List of fish species by lake. An * indicates the species was captured in the 1990's during other studies. Species captured during sweepnetting or in crayfish traps indicated by #. Species captured by angling indicated by "a". Table 11 (cont.).

Lake (1996 pH)	Company (C1)	(tde Superior (4.3)	Log Boom (5.5)	Low (7.2)	Lumaden (5.2)	Mink (6.3)	Murfel (5.1)	Marray (6.2)	Note /Corniches (4.4)	Narrany (5.1)	O.S.A. (4.8)	Partridge (5.7)	Patten (5.1)	Pearl (5.3)	Poter (6.5)	Pike (5.6)	Prouts (4,5)	Quartitie (4.8)	Rocky 16.6
	9	Q.	\$	14	0	6	3	01	0	2	0	_	-	-	01	0	0	0	01
2							\vdash			Н	\vdash	Н			\Box	\dashv	\exists		×
3						Н	Н				Н	H	H	-	\dashv	\exists	\dashv	H	
-				×		×	Н	×		\vdash		\vdash			\forall	\exists			<u></u>
				×		×	Н	×		\vdash	\vdash		Н		\vdash	ж		\vdash	
1				-		\vdash	Н			\vdash	\vdash		\vdash		\vdash		\vdash	-	
3							H								\vdash	\Box			
2	×					×	×	×			H	\vdash		×	×	×			ļ
8		-		\vdash	_		\vdash			×			\vdash		\vdash		\vdash		
3				×			\vdash			_					×				H
4				-													\vdash		
3	S													_	\vdash				\vdash
8	×	 -	×		<u> </u>	×	\vdash	×	-	\vdash	\vdash	-	Н			×	\vdash	-	H
3				×		×	\vdash								×			\vdash	
2 ,		-		×		-					\vdash		-			\vdash			\vdash
2		-	\vdash	×	<u> </u>	\vdash						-	-	-	×		\vdash		\vdash
1		\vdash	\vdash	Ĥ	\vdash	<u> </u>		<u> </u>						_	Ĥ	×		_	\vdash
4		-	\vdash	×		×		×							×	Ļ	\vdash		\vdash
3			×	_	-	-	\vdash	×		-				_	×	×	-	\vdash	Ľ
•	-		_		-					-		-							-
7	×	\vdash	×	×	-	×	×	×		_	\vdash			<u> </u>	×	×		_	Ľ
2	×		_	×	<u> </u>		\vdash	×			_	_			×	×		<u> </u>	}
C		_	<u> </u>	×		_						<u> </u>	_						L
				×	L	L		<u> </u>			_		_	_			ļ		L
1				×		_	_			_		-		<u> </u>	×	×		Ļ.	ļ,
	_	_				L		L	_		_		_		_		_		-
F	×	_	×	×	_	×	_	×			<u>L</u>		Ļ	_	<u> </u>	×	_		ļ,
	ı									ı	ı	ı	ı	1	l .	1			ı

DGS-Mackenn shirer; bis-blackhook shiner; biu-bluepil; bin-blunhook minnow; bs-brook stickleback; br-brook frou; bb-brown builhead; cm-central mudminnow; cis-cisco; fhm-fathead minnow; fad-finescale dace; gs-golden shiner; id-iowa darter; jd-johnny darter; it-lake trout; lw-lake whitefish; lmb-largemouth bass; ms-mimic shiner; np-northem pike; nrd-northem redbelly dace; pum-pumpkinseed; nb-rock bass; rs = rainbow smelt; ss-shimy sculpin; smb-smallmouth bass; wal-walleye; ws-white sucker; yp-yellow perch

Table 11 (cont.).

List of fish species by lake. An * indicates the species was captured in the 1990's during other studies. Species captured during sweepnetting or in crayfish traps indicated by #. Species captured by angling indicated by "a".

(Hel Secti) men.	· pea	1	bla	1	3	3.	2	8	8	4	3	B	R	¥	×	Ł	1	1	•	2	1	£	E		1	7	R.
Reque (5.0)	0					_					_													\dashv	\dashv	\dashv	\dashv
Round Otter (6.2)	01		×	×			×						×				×		×	\exists	×	×	\dashv	\dashv			×
RuthRoy (4.9)	0	-																									
Sandy (5.1)	-	_	_																						_		×
Sealey's (6.1)	~	_			×			×		×	×									×				\vdash	_		
Shingwak (4.7)	0					\vdash																			\vdash		\vdash
Silver (5.0)	0																										
Selomos (3.6)	0	_							_												\vdash				\vdash		_
Spark (4.5)	0																										
Teaning (6.5)	2														×					П				×			
Terry (5.4)	3						×														×						×
Chreenerrows (5.8)	01		×	×					×						×				×		×	×			×	×	×
Topaz (4.6)	0					\square				Щ												H					
Trillakes N (6.7)	7	×	Н	\vdash	\vdash	Н	×			Щ	Ш	×							×	П	×	H	\vdash	-	Н		×
Trilakes SE (6.5)	7		×				×										×		×		×	×					×
Trilakes SW (6.3)	3									Щ							×				×	H	\Box				×
Turbid (5.0)	4		×			×		Щ		Щ											×						×
Turtleback (5.1)	0																					\vdash			\vdash		\vdash
Van(6.2)	6			×					×				×				x				×	×			×	- 1	x
Van Winkle (6.6)	11		×	×		Н		Щ	×	×		Ш	×				x		×		×	×	\vdash	\vdash	×	Н	×
Wason Road (6.0)	5				×			×	_	×	×									×							

gs golden shiner; id-iowa darter; jd-johnny darter; in-lake trout; lw-lake whitefish; lmb-largemouth bass; ms-mimic shiner; np-northem pike; md-northem redbelly dace; pum-pumpkinsced; rb-rock bass; rs rrainbow smelt; ss-slimy sculpin; smb-smallmouth bass; wal walleye; ws white sucker; yp ryellow perch

List of fish species by lake. An * indicates the species was captured in the 1990's during other studies. Species captured during sweepnetting or in crayfish traps indicated by #. Species captured by angling indicated by "a". Table 11 (cont.).

Lake (1996 pB).	Whisterjack (4.6)	York (6.1)	#6 (4.5)	67 (5.0)	69 (4.9)	. N74 (4.8)	(875 (4.8)	(1.5) 724	828 (4.9)	(6.4) 659	(4.8)	(53) (63)	(4.9)	859 (5.7)	#64 (5.3)	(5.2) 234	(6.8.3)	(8.0)	(4.1)	m6(7.0)
	0	=	0	2	0	٥	0	0	0	o	0	٥	2	4	0	۰	۰	0	4	v
2				\vdash	\vdash							-		1						
2		\dashv					_	\vdash		\vdash			Т	Т						Γ
ž	\dashv	×		\vdash	Н							×		×						Γ
1	\dashv	×					-	\vdash				×		×						
ĭ		\dashv	\dashv	\dashv	\vdash	Н	—	\vdash	-			\vdash	-							\vdash
3	\dashv			-		\vdash		\vdash							Н					
2		×	\dashv	×		\dashv		<u> </u>	\vdash				×	×	-		\vdash	\vdash		
8	\dashv		\dashv	×		\dashv		<u> </u>						\vdash	\dashv	\neg				#X
a	\dashv	${\times}$	-	\dashv	\dashv				\vdash	\dashv		×		×	\dashv					
4	\dashv	\dashv		\dashv	\dashv						-			H	_					
ı	\dashv	\dashv		\dashv	\dashv	\dashv				\dashv	\dashv				\dashv		\dashv	\dashv		_
3	-+	×	\dashv	-	\dashv	\dashv	\dashv		\dashv	\dashv	\dashv	\dashv	×	×		\dashv	\dashv	\dashv	×	×
크.	\dashv	ž	\dashv		\dashv	\dashv				\dashv	\dashv	긤		\vdash	\dashv		\dashv	\dashv	\dashv	_
-	\dashv		\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv			\dashv	\dashv	\dashv	\dashv	_	
2	-	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv		\dashv	\dashv	\dashv	\dashv		×		\dashv		\dashv		
i	\dashv	\dashv	-	\dashv	-	\dashv		\dashv	\dashv		\dashv	×		\vdash	\dashv	\dashv	-	\dashv	\dashv	_
3	4	-	\dashv	-	\dashv	\dashv	\dashv	\dashv		\dashv	_			×		\dashv	\dashv	\dashv	\dashv	
8	_	*	\dashv	\dashv	\dashv		\dashv	\dashv	\dashv	\dashv	\dashv	\dashv		×	-+	\dashv	\dashv	\dashv	\dashv	×
1	\perp	_	\dashv	\dashv	-	\dashv	\dashv	\dashv		\dashv	_	\dashv			\dashv	\dashv	\dashv	-	\dashv	_
1	\dashv	×	4	4	_	\dashv	-	4	-	\dashv		_		<u>×</u>	\dashv		\dashv	-	×	×
£	\downarrow	×	4	4	4	\dashv	4	\dashv	\dashv	\dashv	_	×		×	+	\dashv	\dashv	-	×	
Ė	_	\perp	_	\downarrow	\dashv	\dashv	\dashv	4	\dashv	\dashv	\dashv	_	_	\dashv	4	\dashv	4	\dashv	\dashv	_
	4	4	_	\perp	4	4	_	4	_	\dashv	_	\dashv	_	_	4	4	\dashv	4	\dashv	
1	4	×	\perp	\perp	\bot	\dashv	_	\dashv	\dashv	\dashv	_	\dashv	_	×	4	\dashv	4	4	4	_
Ē	\perp	\perp		1	_	4	_	\dashv	4	4	4	\dashv	_	×	4		\dashv	\dashv	_	
	\perp				\downarrow	_	\dashv	\perp	_	4	4	\dashv	\dashv	×	_	4	_	4	_	_
Ř		×	4	_	4	\dashv	4	_	4	\dashv		×	×	<u>~</u>	\dashv	4	_	\dashv	<u>*</u>	×

bes-blackehn shiner, bis-blacknose shiner, blu-bluegill, bnn -bluntnose minnow; bs-brook stickleback; bt-brook trout; bb-brown bullhead; cm -central mudminnow; cis-cisco; flum-fathead minnow; fsd-finescale dace; gs-golden shiner; id-iown darter; id-iohnny darter, it-lake trout; lw-lake whitefish; lmb-largemonth bass; ms-minic shiner; np-morthem pike; md-morthem redbelly dace; pum-pumpkinsced; rb-mock bass; rs = rainbow smelt; ss-shiny seulpin; smb-smallmouth bass; wal-walleye; ws-white sucker; yp-yellow perch

Figure 17. Frequency distribution of fish species richness

Table 12. Fish species richness of lakes by drainage basin.

Drainage Basin Number Lakes	Total Number Fish Species	Num	Number Fish Species		
Sampled)			Median	Unique to Drainage	
Baic Fine (9)	12	0-7	2.1	1.0	0
Chikanishing (35)	18	0-12	1.9	0.0	2 (brook stickleback, finescale dace)
Grace (1)	1	1	t		. 0
Howry Creek (30)	18	0-11	6.0	6.5	2 (blackchin shiner, blacknose shiner)
Mahzenazing (27)	17	0-12	4.5	3.0	l (brook trout)
McGregor Bay (17)	23	0-14	6.0	6.0	3 (mimic shiner, rainboy smelt, walleye)
All combined (119)	28	0-14	4.1	3.0	

Figure 18. Location of fishless lakes

Table 13. Fish stocking in biological survey lakes recorded by Ontario Ministry of Natural Resources.

Lake name	Year stocked	Species stocked
Acid	1986	Smallmouth bass
A.Y. Jackson	1964 1986	Brook trout Smalmouth bass
Bakam	1962, 1966, 1969	Smallmouth base
, Beaver	1965	Rainbow trout
Bell	1962, 1964, 1966, 1969 1984-89, 1992	Smallmouth bass Lake trout
Boundary	1966	Smallmouth base
Cartyle	1956, 1960, 1962, 1967 1962	Smallmouth bass Walleye
Clearsilver	1965, 1967 1967	Brook trout Smallmouth bass
David	1965	Smallmouth bass
Descon	1966	Largemouth bass
Pax	1966	Largemouth bass
George	1960-62, 1966-67, 1969-70, 1977, 1984 1962, 1967 1961 1962 1977, 1984-85, 1989-90, 1992	Smallmouth bass Muskellunge Lake whitefish Walleye Lake trout
Grey	1957 1962, 1966	Brook trout Rainbow trout
Harrecood	1968, 1971	Rainbow trout
Johnnie	1953, 1956, 1966-68 1953, 1956 1964 1964, 1992	Smallmouth bass Walleye Brook trout Lake trout
Kaltaltise	1962 1963, 1990 1966, 1969-70	Walleye Lake trout Smallmouth bass
Killamey	1960	Smallmouth bass
Lumsden	1966-67	Pink salmon
Muriel	1964	Brook troat
Norway	1956	Smallmouth bass
ARO	1956, 1960	Smallmouth bass
Purtridge	1986	Smallmouth bass
Poler	1984, 1985, 1989, 1990, 1992	Lake trout
Proubt	1970	Rainbow trout
RuthRoy	1961	Brook trout
Terry	1986	Smallmouth base

populated the Algoma region at heights 60 m above present-day Lake Huron levels (Robbins and MacCrimmon 1974). Therefore, the smallmouth bass populations in park lakes between 177 m (current Lake Huron water level) and 237 m elevation were probably native. A self-sustaining smallmouth bass population was re-established in A.Y. Jackson Lake following water quality recovery by stocking 22 adults in 1986 (Snucins and Shuter 1991). Smallmouth bass were reintroduced to George Lake in 1997 by transferring 24 fish from Kakakise Lake.

Based on our survey results and historical information, there are 24 lake trout lakes in the Killarney Park watershed. They are the following: Acid, Bell, Burke, David, de Lamorandiere, George, Grace, Great Mountain, Helen, Ishmael, Johnnie, Kakakise, Killarney, Low, Lumsden, Nellie, Norway, O.S.A., Peter, RuthRoy, Solomon, Teardrop, Threenarrows, #59.

A total of 17 lakes within the Killarney watershed lost native lake trout populations (Table 14). The species has been reintroduced into three of those lakes (Bell, George, Johnnie). Deposition of fertilized eggs by the introduced lake trout was confirmed during 1995 in both George and Johnnie lakes. Native lake trout populations currently exist in 7 lakes (Helen, Ishmael, Kakakise, Low, Teardrop, Threenarrows, #59). Only three of those lakes (Threenarrows, #59, Kakakise) have ever been stocked with hatchery-reared lake trout (Table 13).

Teardrop Lake is the smallest waterbody (3.4 ha) in the province known to support a lake trout population. The existence of this population was unknown prior to 1996. Protein electrophoresis of muscle biopsy samples taken from 20 fish on October 30, 1996 was done by Bill Martin (OMNR Peterborough). The results revealed that the population contains a gene assemblage unique in Ontario. It also suggested that the population had experienced a genetic bottleneck at some time in the past, possibly when the lake was first colonized by a small number of individuals. Analysis of otoliths from four lake trout that died during the summer survey indicates that the fish have extremely slow growth rates (John Casselman, OMNR, Glenora).

Natural recolonization by fish is occurring in some lakes. Smallmouth bass have returned to Johnnie Lake; a single specimen (fork length 271 mm) was captured at the north end of the lake during a netting survey in 1984 (OMNR unpublished data) and in 1995 two young-of-the-year fish were captured in a plexiglass trap set by the mouth of the channel connecting with Carlyle Lake. The lake trout population in Johnnie Lake was re-established in 1992-1993 by emigration of stocked fish from Bell Lake. A northern pike was captured in Freeland Lake during 1997, the first record of that species in the lake since 1971 (Harvey and Lee 1980). The pike probably emmigrated from Kakakise Lake.

Great Mountain Lake contains largemouth bass as the a result of an unauthorized introduction that likely occured after the last netting assessment in 1985. The species is not native to the lake (D. MacHarg, D. Brown, pers. comm.).

Known and probable fish losses from Killarney Park lakes. Native species captured in 1979 and not captured in 1995-1997 are indicated by *. These species are extirpated or may still be present but missed by our sampling. Table 14.

e ike	Known and probable losser reported by Harvey and Lee (1980)	Native species not captured in 1995:1997	Comment
A.Y. Jackson	brook trout, largemouth bass, northern pike	Northern pike	Brook trout population was probably introduced and not native. Scarcity of typical largemouth bass habitat in the lake suggests that native species was smallmouth bass. Smallmouth bass were reintroduced in 1986.
Acid	cisco, lake trout	cisco, lake trout	
Amikogaming	smallmouth bass	smallmouth bass	
Bell	cisco, lake trout, largemouth bass		Lake trout reintroduced during 1980's. Cisco and largemouth bass either missed in 1979 survey or have recolonized from Balsam Lake.
Bodina		brook stickleback*	
Boundary	largemouth bass, smallmouth bass	largemouth bass, smallmouth bass	
Burke	lake trout	lake trout	
Carlyle	cisco, white sucker		Cisco and white sucker either missed in 1979 survey or have recolonized from Johnnie Lake.
Cave	iowa darter, northern redbelly dace	northern redbelly dace	
David		lake trout, lake whitefish"	Harvey and Lee (1980) did not capture lake trout in their survey and appeared to be unaware that the species was historically present. Polkinghome and Gunn (1981) documented the historical occurrence of lake trout in the lake.
de Lamorandiere	lake trout	lake trout	
Fish		brown bullhead*	
Freeland	northern pike		Northern pike may have immigrated from Kakakise Lake.
Gem		bluegill", iowa darter"	

Table 14 (cont.). Known and probable fish losses from Killarney Park lakes. Native species captured in 1979 and not captured in 1995-1997 are indicated by •.

These species are extirpated or may still be present but missed by our sampling.

Known and probable tosses reported by Native species not captured Harvey and Lee (1980)	trout perch, walleye burbot, trout perch, walleye burbot, trout perch, walleye burbot, trout perch, walleye trout captured in 1979 were probably immigrants from the stocking of A.Y. Jackson Lake mentioned by Harvey and Lec (1980). The completed field summary forms in Appendix IV of Harvey and Lec (1980) do not indicate that any bluegills were captured in George Lake, suggesting that the listing (of bluegill occurrence in George Lake) in their table 11 was erroneous. Smallmouth bass reintroduced in 1997 after our survey.	cisco*, lake trout, lake whitefish*, Espanola District OMNR files contain record of lake trout.	smallmouth bass lake trout*, rock bass*, smallmouth bass bass white sucker*	northem pike johnny darter*, northem pike	banded killifish", iowa darter", rainbow darter	northern pike brown bullhead*, johnny darter*, sculpin spp.*	minnow, cisco, lake trout, smallmouth bass are reinvading from Carlyle Lake. Cisco have reinvaded from either Carlyle Lake or Bell Lake, or were always present, but in low abundance and not captured during 1979 (Harvey and Lee 1980) or 1984 (Sudbury Basin Study) gill netting.	minnow, central mudminnow, iowa darter, darter, northem redbelly dace, walleye sucker*	burbot, lake trout, smallmouth bass, walleye, white sucker burbot, cisco*, lake trout, rock bass*, smallmouth bass, walleye, white sucker	smallmouth bass, walleye northern pike*, smallmouth bass,	walicyc	brown bullhead*
burbot, muskellunge, smallmouth bass, trout perch, walleye			smallmouth bass	northern pike		northem pike	central mudminnow, cisco, lake trout, smallmouth	bluntnose minnow, central mudminnow, iowa darter, johnny darter, northern redbelly dace, walleye	urbot, lake trout, smallmouth bass, walleye, white	smallmouth bass, walleye		
George		Grace	Great Mountain	Helen	Номту	Ishmael	Johnnie	Kakakise	Killamey bur	Little Sheguiandah	Log Boom	

Table 14 (cont.). Known and probable fish losses from Killarney Park lakes. Native species captured in 1979 and not captured in 1995-1997 are indicated by ...
These species are extirpated or may still be present but missed by our sampling.

83) 1	Kindwa and probatole foses reported by Harrow and Lee (1980)	Nutive species not captured in 1995, 1997	Commission
Low		golden shiner*, rainbow darter*	
Lumsden	burbot, cisco, lake chub, lake trout, slimy sculpin, trout perch, white sucker, yellow perch	burbot, cisco, lake chub, lake trout, slimy sculpin, trout perch, white sucker, yellow perch	Two lake chub were captured during 1983 CLS survey, but none during the two surveys done since then (1989 CLS survey, 1995 survey).
Muriel	brook trout, central mudminnow, cisco, golden shiner, lake whitefish, smallmouth bass, white sucker	central mudminnow, cisco, golden shiner, fake whitefish, rock bass*, smallmouth bass, white sucker	The brook trout were stocked, not native.
Nellic	lake trout	lake trout	
Norway	lake trout, smallmouth bass	lake trout, smallmouth bass	
0.S.A.	brown builhead, cisco, lake trout, rock bass, smallmouth bass, yellow perch	brown bullhead, cisco, lake trout, rock bass, smallmouth bass, yellow perch	
Partridge	smallmouth bass	smallmouth bass	
Peter			Native lake trout extirpated. Current population consists of stocked fish.
Sandy	smallmouth bass	smallmouth bass	
Solomon	lake trout	lake trout	
Тепу	rock bass	brown builhead*, rock bass	
Threenarrows		brown bullhead*	
Topaz	pumpkinseed, yellow perch	pumpkinseed, yellow perch	
Turbid	largemouth bass	largemouth bass	
Whiskeyjack	smallmouth bass	smalfmouth bass	

Fish Species Losses

Fish species currently known to be missing total 87 populations from 36 lakes (Table 14). The overall number of fish populations lost was estimated to be 262 for the 55 lakes that were biologically sampled, currently have pH < 6.0 and surface area > 3.4 ha (Table 15). This estimate of species losses assumes that the natural pH of the lakes was above 6.0, an assumption that could be challenged for some lakes. The estimated fish diversity for lakes 3.4 ha to 266.9 ha was based upon a regression derived from the 44 surveyed Killarney lakes with pH \geq 6.0 and presumably unaffected by acidification (Number of species = 0.99 + 4.59 Log₁₀Area; r^2 = 0.46). Hanwood Lake was considered an outlier (> 2 SD; Figure 19) and not included in the regression equation. The estimated fish diversity for lakes > 266.9 ha was based upon the Matuszek et al (1990) regression (Log₁₀Number of species = 0.59 + 0.2 Log₁₀Area) for Ontario lakes 10-1585 ha in size with pH > 6.0. We sampled 20 acidified lakes that are < 3.4 ha surface area, but did not estimate species losses for those waterbodies because biological sampling was not done on any unacidified lakes in that size range.

The number of fish species that we observed in the 39 lakes with pH > 6.0 and surface area > 10 ha generally agreed with the output of the Matuszek et al (1990) regression equation (Figure 19). An exception was Hanwood Lake. Interestingly, three of the four other lakes with relatively low species diversity (ie. Leech, Beaver, Casson, TriLakes SW) are also near Hanwood Lake. Lake #59 had one of the more diverse fish communities and this may be related to the fact that it was once a part of Threenarrows Lake. The relatively high number of species captured in Low Lake is due at least in part to the additional species sampled during testing of the Nordic Standard nets.

Fishing Gear Effectiveness

There were 366 fish populations in the 54 lakes that were sampled with all gear types. The gear that sampled the greatest number of populations was the gillnet (Tables 16 and 17; Appendices F,G,H,I). The least effective gear was the 4 foot trap net. If trap nets had not been used, only 2 populations would have been undocumented. Gill nets and wire-mesh minnow traps, together sampled 331 populations (90% of the total).

The number of species captured differed between gear types: both the wire-mesh minnow traps and the plexiglass traps captured 20 species each; the gillnets caught 14 species; and the trapnets sampled 12 species. Hypolimnetic species (eg. cisco, lake trout) and some other species (eg. brown bullhead, white sucker) were sampled most effectively by the gillnets (Table 17). Small nearshore species (eg. cyprinids) were captured best by the wire-mesh minnow traps and plexiglass traps. The trap nets appeared to work as well or better than the other gears for only two species (largemouth bass, smallmouth bass).

The repeat sampling of Freeland Lake captured a greater number of species than the first visit

Table 15. Estimated number of fish species missing from lakes that were biologically sampled, currently have pH < 6.0 and area > 3.4 ha. Estimated fish diversity for lakes 3.4 to 266.9 ha in size based upon regression derived from 44 surveyed Killarney lakes with pH>6.0 (Number of Species = 0.99 + 4.59 Log₁₀Area). Estimated fish diversity for lakes > 266.9 ha based upon Matuszek et al. (1990) regression (Log₁₀Number of species = 0.59 + 0.2 Log₁₀Area) for Ontario lakes 10-1585 ha in size with pH > 6.0.

Lake name	Area (ha)	Observed Number Species	Estimated Number Species	Difference (Est Obs.)		
#45	4.4	3	3.94	0.94		
#64	3.6	0	3.54	3.54		
Acid	19.6	0	6.92	6.92		
Amikogaming	17.8	0	6.73	6.73		
Artist	26.0	6	7.48	1.48		
A.Y. Jackson	6.5	4	4.72	0.72		
Bell	347.4	12	12.54	0.54		
Billy	24.1	2	7.33	5.33		
Boundary	93.3	3	10.03	7.03		
Bunnyrabbit	12.7	0	6.06	6.06		
Burke	8.4	0	5.23	5.23		
Carlyle	156.7	9	11.07	2.07		
Cave	12.4	7	6.01	-0.99		
Chain	10.9	0	5.75	5.75		
Clearsilver	30.9	0	7.83	7.83		
David	406.3	1	12.94	11.94		
Deacon	36.9	10	8.18	-1.82		
de Lamorandiere	5.9	0	4.53	4.53		
Fish	115.4	10	10.46	0.46		
Freeland	47.7	10	8.69	-1.31		
Gail	20.9	0	7.05	7.05		
George	188.5	11	11.43	0.43		
Grace	47.2	1	8.67	7.67		

Table 15 (cont.). Estimated number of fish species missing from lakes that were biologically sampled, currently have pH < 6.0 and area > 3.4 ha. Estimated fish diversity for lakes 3.4 to 266.9 ha in size based upon regression derived from 44 surveyed Killarney lakes with pH>6.0 (Number of Species = 0.99 + 4.59 Log₁₀Area). Estimated fish diversity for lakes > 266.9 ha based upon Matuszek et al. (1990) regression (Log₁₀Number of species = 0.59 + 0.2 Log₁₀Area) for Ontario lakes 10-1585 ha in size with pH > 6.0.

Lake name	Area (ha)	Observed Number Species	Estimated Number Species	Difference (Est Obs.)
Great Mountain	198.3	3	11.53	8.53
Grey	31.8	3	7.89	4.89
Johnnie	342.8	11	12.50	1.50
Killarney	326.5	4	12.53	8.53
Lake of the Woods	9.7	3	5.52	2.52
Little Bell	21.1	0	7.07	7.07
Little Mountain	23.6	0	7.29	7.29
Little Superior	13.9	0	6.24	6.24
Log Boom	6.9	5	4.84	-0.16
Lumsden	23.8	0	7.31	7.31
Muriel	31.7	3	7.88	4.88
Nellie	260.5	0	12.08	12.08
Norway	63.3	2	9.26	7.26
O.S.A.	278.9	0	12.00	12.00
Partridge	11.0	1	5.77	4.77
Patten	11.9	1	5.93	4.93
Pike	32.0	10	7.9	-2.10
Proulx	12.0	0	5.94	5.94
Quartzite	15.7	0	6.48	6.48
RuthRoy	54.5	0	8.96	8.96
Sandy	21.6	1	7.12	6.12
Shingwak	5.3	0	4.31	4.31
Silver	6.2	0	4.63	4.63

Table 15 (cont.). Estimated number of fish species missing from lakes that were biologically sampled, currently have pH < 6.0 and area > 3.4 ha. Estimated fish diversity for lakes 3.4 to 266.9 ha in size based upon regression derived from 44 surveyed Killarney lakes with pH>6.0 (Number of Species = 0.99 + 4.59 Log₁₀Area). Estimated fish diversity for lakes > 266.9 ha based upon Matuszek et al. (1990) regression (Log₁₀Number of species = 0.59 + 0.2 Log₁₀Area) for Ontario lakes 10-1585 ha in size with pH > 6.0.

Lake name	Lake name Area (ha) N		Estimated Number Species	Difference (Est Obs.)	
Solomon	8.3	0	5.21	5.21	
Spark	12.3	0	5.99	5.99	
Terry	11.5	3	5.86	2.86	
ThreeNarrows	810.1	10	14.85	4.85	
Topaz	4.7	0	4.07	4.07	
Turbid	20.7	4	7.03	7.03	
Turtleback	5.4	0	4.35	4.35	
Whiskeyjack	12.8	0	6.07	6.07	
#64	3.6	0	3.5	3.5	
TOTAL	·	153	415	262	

Figure 19. Number of fish species sampled in Killarney lakes (pH >=6)

LOG10 (expected number of species) from Matuszek et al (1990)

Regression line and 95% confidence intervals shown

Table 16. Total number of fish populations captured by each gear type in the 54 lakes that were sampled with all gears. Total number of populations (ie. a species in a lake) in this set of lakes is 366.

	Number of populations	Number of populations (% of total) sampled exclusively by gear					
Gen	(% of total) sampled by gear	including trapnet catch	excluding trapnet catch 92 (25%) 28 (8%)				
Gill net	228 (62%)	58 (16%)					
Wire-mesh minnow trap	225 (61%)	25 (7%)					
Plexiglass trap	199 (54%)	12 (3%)	18 (5%)				
4 foot Trap net	178 (49%)	2 (0.5%)	excluded				
Other (angling, invertebrate gear, Nordic gill nets)	not summarized	15 (4%)	15 (4%)				

Table 17. Number of populations, by species, captured by each gear in the 54 lakes fished with all gears. "Other" refers to species caught angling, in Nordic nets (N) or by invertebrate gear.

Species	Total number	300	Number of pop	ulations captur	red by each gear	
	of populations in the 54 lakes	Gill net	Trap net	Plexiglas	Wire-mesh	Other
Blackchin shiner	1			1		
Blacknose shiner	1	·		1		
Bluegill	26	9	16	24	24	
Bluntnose minnow	21		2	14	20	1
Brook stickleback	2			1	2	
Brook trout	2	2				
Brown bullhead	24	21	13	6	5	1(N)
Central mudminnow	8			3	5	3
Cisco	15	15				
Fathead minnow	4	· ·		2	2	
Finescale dace	1			1	1	
Golden shiner	19	10	8	9	13	1
Iowa darter	15			4	9	4
Johnnie darter	3			1	2	
Lake trout	6	6				
Lake whitefish	0					
Largemouth bass	21	14	16	13	16	
Mimic shiner	1			1	1	
Northern pike	22	21	8	1	3	1
N. redbelly dace	4			4	2	
Pumpkinseed	46	28	36	45	42	
Rock bass	29	21	22	24	28	
Rainbow smelt	1					1(N)
Slimy sculpin	2					2(N)
Smallmouth bass	20	17	15	9	8	1
Walleye	2	2				
White sucker	24	24	17		1	
Yellow perch	46	38	25	35	41	
TOTAL	366	228	178	199	225	15

to the lake. Differences in amount of aquatic vegetation between surveys may account for the improved catch. The first survey was done in mid-June after dense growths of aquatic vegetation were well established, but the second occured in May while the lake was free of obstruction by plants.

The Nordic Standard gillnets appear to be a good method for assessing fish species diversity. In Low Lake the Nordic Standard gillnets captured as many species as our entire suite of survey gears (Figure 20). The Nordic gear failed to catch two species, johnnie darter and lake trout, but it added two others, rainbow smelt and slimy sculpin, to the species list. The failure to capture lake trout in Low Lake was due to the species' very low abundance; a parallel study over a period of 10 days with gillnets (sixty 2-hour daytime sets) yeilded only one lake trout. In Helen Lake the Nordic gear captured two species, brown bullhead and slimy sculpin, that were not captured by our survey gear. The smaller mesh sizes and finer material used to make the Nordic nets appear to make it more effective than our standard gear for catching the smaller hypolimnetic species. These results suggest that the distribution of slimy sculpin was probably underestimated by our biological survey.

Plankton

The plankton sample from Teardrop Lake contained the following species: Cyclops scutifer, Diaptomus minutus, Cyclops b. thomasi, Epischura lacustris copepodid, Daphnia dubia, Daphnia galeata mendotae, Daphnia catawba, Polyphemus pediculus, Sida crystallina, Daphnia longiremis, Daphnia ambigua. These species are typical of unacidified lakes in the area. No Mysis were captured in any of the lakes that were sampled.

Crayfish

Four species of crayfish were captured (Table 18). <u>Cambarus robustus</u> was the most common, occuring in 41 lakes (pH 4.7 - 7.2), but was not captured in any of the lakes we surveyed in the Howry Creek watershed (Figure 21). <u>Cambarus bartoni</u>, found in only 23 lakes (pH 4.3 - 6.6), was the least common species. Cambarids were found in lakes at elevations up to 348 m. In contrast, Orconectids were restricted to low-elevation lakes (ie. ≤ 236 m). <u>Orconectes virilis</u> was found in 35 lakes (pH 5.2 - 7.6) and <u>Orconectes propinquus</u> was found in 32 lakes (pH 5.6 - 7.6). No crayfish were captured in 25 of the surveyed lakes.

The most common stream species were <u>C. robustus</u> (13 locations) and <u>C. bartoni</u> (12 locations). Or conectids were found in only three streams, all in the park's northern lowlands (Figure 22). No crayfish were captured in 22 of the surveyed streams.

The lakes that we have surveyed to date in the Chikanishing Creek watershed are populated almost exclusively by C. robustus. Notable exceptions are Kakakise Lake (pH 6.3) and Little Sheguiandah Lake which probably did not acidify to the same degree as other lakes in the watershed and thus were refugia for acid-sensitive Orconectes.

Figure 20. Comparison of catches: Killarney Inventory (K) versus Nordic Standard (N)

Crayfish species captured in each lake and method of capture (T = crayfish trap; V = visual search; S = sweepnetting). If a species was caught in the traps, the catch-per-unit-effort (number per trap per night) is indicated. (Cr = <u>Cambarus robustus</u>; Cb = <u>Cambarus bartoni</u>; Ov = <u>Orconectes virilis</u>; Op = <u>Orconectes propinquus</u>).

Lake (pH)	Search	Cambarus	Lopusins	Cambary	s bartoni	Orconect	ca yirilia	Orcor		Comments
	methods	Capture Method	Trap	Capture Method	Trap CUE	Capture Method	Trap CUE	Capture Method	Trap	
Add (5.0)	TS	Τ	0.11		0		0		0	
Amikegaming (5.1)	TS	Т	0.44		0		0		0	
Artist (5.7)	TSV	T	0.89		0		0		0	(V) Cr in outlet
A.Y. Jackson (5.8)	TSV	ΤV	0.27		0		0		0	
Balsem (6.1)	TS	Т	0.02		0		0	Т	0.07	
Beaver (6.0)	TS		0		0	r	8,17	Т	0.5	
Bell (5.9)	TSV	Т	0.09		0	T	0.02	V	0	(V) Cr in David Creek
Betty (7.0)	TS		0		0	r	0,61		0	
Billy (4.7)	TS	Т	0.61		0		0		0	(V) Cr in outlet
Bizhiw (4.5)	TS		0		0		0		0	(V) none in outlet
Bodina (6.6)	TSV		0		0		0	Т	0.19	
Boundary (5.2)	(1996) TS	T	0.26		0	т	0.04		0	
	(1997) TSV	Т	0.03	T	0.01	Т	0.14		0	(V) Cr and Cb in outlet, Cr David Creek inlet, Cb in a sm inlet stream
Bunnyrabbit (4.8)	TS		0	Т	0.5		0		0	
Burke (5.1)	TSV	ΤV	0.11		0		0		0	
Canis (6.4)	TSV		0		0	T	1.5		0	
Cartyle (5.9)	TS	Т	0.09		0		0	s	0	
Casson (7.6)	TSV		0		0	ΤV	7.33	TV	8.33	
Cat (6.4)	TSV		0		0	Т	0.56	V	0	(V) Ov in outlet
Cave (5.6)	TSV		0		0	ΤV	0.89		0	(V) Cr in outlet
Chain (4.7)	TSV		0		0		0		0	(V) none in outlet or inlet
Clearsilver (4.9)	TSV		0		0		0		0	(V) none in inlet - dried up
Cranberry Bog (6.1)	TS		0		0		0		0	
Croler East (5.9)	TS		0		0		0		0	
Crater West (5.4)	TS		0		0		0		0	
Cuckes (6.6)	TS		0		0	т	0.17		0	
David (5.0)	TS	Т	0,61		0		0		0	
Deacon (5.9)	TSV	TV	0.04		0		0	V	0	

Table 18 (cont.). Crayfish species captured in each lake and method of capture (T = crayfish trap; V = visual search; S = sweepnetting). If a species was caught in the traps, the catch-per-unit-effort (number per trap per night) is indicated. (Cr = <u>Cambarus robustus</u>; Cb = <u>Cambarus bartoni</u>; Ov = <u>Orconectes virilis</u>; Op = <u>Orconectes propinquus</u>).

Lake (pH)	Search	Cambarus	robustus	Cambaru	s bartoni	Отсолес	es virilis	Orce	nectes navus	Comments
	methods	Capture Method	Trap	Capture Method	Trap	Capture Method	Trap	Capture Method	Trep	
de Lamorandiere (5.0)	TSV	٧	0		0		0		0	
East Howry (7.1)	TS		0		0	Т	0.25		0	
Pinh (5.7)	TSV		0		0	τν	0.06	sv	0	(V) none in outlet or inlet on north shore
Pez (6.2)	TSV	τv	0.04		0		0	v	0	(V) Cr and Op in outlet
Frank (6.2)	TS	Т	0.11		0		0	Т	0.06	
Frecland (5.5)	(1995) TS	Т	0.07		0	s	0		0	
	(1997) TS	Т	0.07		0	Т	0.13		0	(V) Cr in inlet from Killamey Ll none in inlet from Kakakise Lk
Gail (4.6)	TSV		0		0		0		0	(V) none in outlet
Gem (6.1)	TSV		0		0	τv	0.04	٧	0	
George (5.8)	TSV	τv	0.06		0		0	v	0	(V) Cr in inlet from Freeland and in outlet (Chikanishing River)
Goese (6.2)	TSV		0		0	Т	0.17		0	(V) none in outlet or inlet
Geschen (6.2)	TSV		0		0		0	Т	0.06	
Grace (5.1)	TSV		0	TV	0.33		0		0	(V) Cb in outlet
Great Mountain (5.4)	TS		0	Т	0.33		0		0	(V) Cb in outlet
Grey (4.9)	TS	Т	1.96		0		0		0	
Grew (6.6)	TSV		0	٧	0	٧	0		0	
Hanwood (6.4)	TSV		0		0		0	V	0	
Harry (6.3)	TSV	τv	0.06		0		0	sv	0	
Heaven (4.8)	TSV		0		0		0		0	(V) none in outlet
Helen (6.3)	(1995) TS		0		0		0		0	
	1997) TV	v	0		0		0	v	0	
Hemlock (4.7)	TS		0		0		0		0	
Howry (6.3)	TSV		0	٧	0	V	0	٧	0	
labmael (6.5)	(1995) TS		0		0		0	τ	0.04	
	1995) TV	TV	0.06		0		0	τv	0.09	
Johnnie (5.6)	TSV	τv	0.13		0		0	Т	0.02	
Kakskise (6.3)	TS	Т	0.06		0	Т	0.04	т	0.02	

Table 18 (cont.). Crayfish species captured in each lake and method of capture (T = crayfish trap; V = visual search; S = sweepnetting). If a species was caught in the traps, the catch-per-unit-effort (number per trap per night) is indicated. (Cr = <u>Cambarus robustus</u>; Cb = <u>Cambarus bartoni</u>; Ov = <u>Orconectes virilis</u>; Op = <u>Orconectes propinquus</u>).

Lake (pH)	Search methods	Cambarus robustus		Cambarus bartoni		Orconectes virilis		Orconectes propinguus		Comments
		Capture Method	Trap CUE	Capture Method	Trap	Capture Method	Trap	Capture Method	Trap	
Kidney (5.3)	TSV		0		0		0		0	
Killaruey (5.1)	TS	Т	1.07		0		0		0	(V) Cb in amal! tributary by Threenarrows portage.
L'Lake of the Woods (4.9)	TSV		0		0		0		0	
Leech (6.9)	TSV		0		0	v	0		0	
Little Bell (4.6)	TSV		0		0		0		0	(V) none in outlet or inlet
Little Leech (7.1)	TSV		0		0	ΤV	6.17		0	
Little Mink (6.7)	TSV		0		0	ΤV	0.06	v	0	(V) Ov in outlet
Little Mountain (5.1)	TS		0	т	0.41		0		0	
Little Sheguiandah (6.1)	TSV	Т	0.1		0		0	v	0	
Little Superior (4.3)	TSV		0	v	0		0		0	
Leg Bosm (5.5)	TS	Т	0.27		0	Т	0.06		0	
Low (7.2)	(1995) TS		0		0		0		0	
	(1997) TV	V	0		0	gillnet	0	τv	0.02	
Lamaden (5.2)	TS	Т	0.3		0		0		0	
Mink (6.3)	TSV		0		0	τv	0.19		0	(V) none in inlet
5.* Muriel (5.1)	TS	Т	0.07		0		0		0	(V) Cr in outlet, none in inlet
Murray (6.2)	TSV		0		0	TSV	0.22	ΤV	0.02	(V) Cb in Notch Creek
Nellie/Carmichael (4.6)	TS		0	Т	1.44		0		0	(V) Cb in outlet (Notch Creek
Norway (5.1)	TS	Т	1.81		0		0		0	
O.S.A. (4.8)	TSV	Т	0.93	V	0		0		0	(V) Cb in Teardrop Lake outle stream and in adjacent area of O.S.A.
Partridge (5.7)	TS	Т	1.0		0		0		0	
Patten (5.1)	TSV		0		0		0		0	(V) Cb in outlet.
Pearl (5.3)	TS		. 0	Т	0.17		0		0	
Peter (6.5)	TSV	V	0		0		0	V	0	
Pike (5.6)	TSV	v	0		0		0	sv	0	
Prouls (4.5)	TSV		0	ΤV	0		0		0	
Quartite (4.8)	TSV		0	τv	1.83		0		0	
. Recky (6.6)	TSV		0		0	TV	0.26		0	

Table 18 (cont.). Crayfish species captured in each lake and method of capture (T = crayfish trap; V = visual search; S = sweepnctting). If a species was caught in the traps, the catch-per-unit-effort (number per trap per night) is indicated. (Cr = <u>Cambarus robustus</u>; Cb = <u>Cambarus bartoni</u>; Ov = <u>Orconectes virilis</u>; Op = <u>Orconectes propinquus</u>).

Lake (pH)	Search methods	Cambarus rebustus		Cambarus bartoni		Orconectes virilia		Orconectes propinguus		Comments
		Capture Method	Trap CUE	Capture Method	Trap CUE	Capture Method	Trap	Capture Method	Trap	
Reque (5.0)	TSV		0		0		0		0	
Round Otter (6.2)	TSV		0		0	Т	0.02	V	0	
RuthRoy (4.9)	TS	Т	0.37		0		0		0	
Sandy (5.1)	TS	Т	2.11		0		0		0	
Sealey's (6.1)	TS		0		0		0		0	
Shingwak (4,7)	TSV		0	τv	0.17		0		0	
Silver (5.0)	TSV		0		0		0		0	
Solomon (5.6)	TSV		0		0		0		0	(V) Cr and Cb in inlet stream from Roque Lake.
Spark (4.5)	TS		0	Т	3.33		0		0	(V) none in outlet
Teardrep (6.5)	TSV		0	TV	6,5		0		0	
Terry (5.4)	TS	Т	0.17		0		0		0	
Threenarrows (5.8)	TSV	TV	0.02		0	Т	0.04		0	(V) none in inlet from Lake #80, but Cb in a nearby tributary.
Tepa: (4.6)	TS		0	Т	1.83		0		0	(V) none in outlet.
Trillakes N (6.7)	TSV		0		0	ΤV	2.39		0	
Trilakes SE (6.5)	TSV		0		0	TV	0.17		0	
TriLakes SW (6.3)	TSV	-	0		0	TV	0.06		0	
Turbid (5.0)	TS	Т	0.17		0		0		0	(V) Cr in inlet.
Turtleback (5,1)	TSV		0	plexiglas V	0		0		0	
Van (6.2)	TSV		0		0	TV	0.06		0	(V) saw one? sp.in outlet
Van Winkle (6.6)	TSV		0		0	ΤV	0.17		0	
Wagen Road (6.0)	TS		0		0		0		0	
Whiskeyjack (4.6)	TSV		0		0		0		0	
York (6.1)	TS		0		0	Т	0.02	Т	0,04	
. #6 (4.5)	TSV		0		0		0		0	
#7 (5.0)	TSV		0		0		0		0	
89 (4.9)	TSV		0		0		0		0	(V) none in outlet stream.

Table 18 (cont.). Crayfish species captured in each lake and method of capture (T = crayfish trap; V = visual search; S = sweepnetting). If a species was caught in the traps, the catch-per-unit-effort (number per trap per night) is indicated. (Cr = Cambarus robustus; Cb = Cambarus bartoni; Ov = Orconectes virilis; Op = Orconectes propinquus).

Lake (pH)	Search	Cambaru	robustus	Cambaru	a bartoni	Orconec	e virilis	Orcor		Comments
	methods	Capture Method	Trap CUE	Capture Method	Trap	Capture Method	Trap	Capture Method	Trap	
#24 (4.8)	TSV		0	TV	7.83		0		0	
#25 (4.8)	TSV		0		0		0		0	(V) none in outlet
#27 (5.1)	TSV		0	TV	2		0		0	
#28 (4.9)	TSV		0		0		0		0	
#29 (4.3)	TSV		0		0		0		0	
#30 (4.8)	TSV		0	Ť	0.33		0		0	
(5.1)	Y V		_	V	-					(V) Cb in inlet.
#37 (6.2)	TS		0		0		0	T	0.06	
845 (4.9)	TSV		0		0		0		0	
659 (3.7)	TS	Υ	0.07		0	Т	0.39	T	0.02	
#64 (5.3)	TSV		0	S	0		0		0	(V) Cb in outlet stream below waterfalls, but not above it.
#65 (S.5)	TSV		0		0		0		0	
#66 (3.3)	TSV		0		0		0		0	(V) none in outlet.
1 869 (3.0)	TSV	V	0		0		0		0	
874 (6.1)	TSV		0		0		0	Т	0.06	
#76 (7.0)	TSV		0		0	T	2		0	

Figure 21. Crayfish distributions in Killarney Provincial Park lakes

Figure 22. Crayfish distributions in Killarney Provincial Park streams

The species <u>Q. virilis</u> experiences reproductive failure below pH 5.6 (Davies 1989). Its presence in Freeland Lake (pH 5.5) and in Boundary Lake (pH 5.2), may be due to recent colonization. Continued monitoring is needed to determine if the populations in Freeland Lake and Boundary Lake will persist in the long term. Either Bell Lake or Threenarrows Lake could conceivably have been the source of colonizers for Boundary Lake. A search of the Boundary Lake outlet and tributaries in 1997 did not capture <u>Q. virilis</u>.

The sampling in 1997 of Helen, Low, and Ishmael Lakes with baited traps in parallel with visual searches of shoreline rocks confirmed that visual searching was the better means of determining species presence.

Macrobenthos

The pH range of lakes in which mayflies were found differed between taxa (Table 19). The most acid-tolerant species, <u>Eurylophella temporalis</u> and <u>Leptophlebia</u>, were found in lakes with pH as low as 5.0. <u>Caenis</u> was found in Lake #45 (pH 4.9) and at first glance it appears to also be very acid-tolerant. However, the very high DOC concentration (17.4 mg/L) in Lake #45 may be ameliorating toxicity of the acidic water. Excluding Lake #45, <u>Caenis</u> were found only in lakes with pH \geq 5.5. Baetidae, apparently the most acid-sensitive taxon, were not found in lakes with pH \leq 6.2. Moderately acid-sensitive species included <u>Stenonema femoratum</u> (pH \geq 5.6) (Figure 23) and <u>Stenacron interpunctatum</u> (pH \geq 5.3).

Mayflies were present throughout the lowland areas of the park, but were found in only two lakes (Burke, Teardrop) with elevations > 250 m. Burke Lake (pH 5.0; elevation 304 m) contained only Leptophlebia, an acid-tolerant taxon. Teardrop Lake (pH 6.5; elevation 325 m) supported a variety of taxa, including the acid-sensitive species Stenonema femoratum. These observations suggest that the absence of mayflies from most high-elevation lakes (ie. > 250 m) is due to the low pH of those waters, rather than an inability to colonize those sites.

The acid-sensitive amphipod <u>Hyalella azteca</u> (Stephenson and Mackie 1986) was present in 51 lakes (pH 5.6-7.6) (Table 20). It too was generally restricted to the lower elevation lakes (Figure 24).

Leeches were captured in 4 (Beaver, Boundary, Hanwood, Sandy) of the 32 lakes in which leech traps were set during 1996. Leeches were also captured in sweepnets or fish traps in Teardrop, Rocky, and Cuckoo lakes. The specimens are preserved for future identification. Leech sampling was discontinued in 1997 because of the low catches.

List of mayfly species captured by lake. Number of mayflies collected during May (1996 & 1997) by turning over rocks is given. Species found by turning over rocks during July 1995 indicated by #. Number of mayflies collected by summertime sweepnetting indicated by *. Table 19.

uridae	Burun																				
Siphionuridae	Siphlonurus				_	_															
7	Stenacton				51		15, 2*	=	23,4	4. •			٥					16	13	-	01
Heptageniidae	Stenonema																				
1	Stenonema					27	4, 140	17		29, 10			22,13*				20,4*		2	17	23
ebildae	eptophiebla				5,6*		2	4						01		ı		4	9		
Leptophichidae	Eurylophella Chloroterpes Leptophiebla temporalis basalis																				
Ephemerellidae	Eurytophella (temporalis			•	14.	9			1•				• 7				7	20•	34.1	12*	•1
Caenidae	Caents			18*						2*							•,				*97
lac	Callibaetis												(mworchm tun								
Bactidae	Procloson									3.			3. Bactidae (genus unknown)							•	
Sweepnetting date		May 31, June 22 / 95	June 8 / 96	July:2 / 97	May 24, July 26 / 95	Not surveyed	July27/95	July17 / 95	July7 / 95	August 17 / 96	July31 / 96	July6,7 / 96	76751yln[June 5,8 / 96	July25 / 96	May 29 / 95	July 2,4 / 97	June 22, July 19 / 95	June 6 / 97	July9 / 96	July 1 / 97
Clean rock substrate	Tound during May (1996 or 1997) survey	Yes	Yes	Not surreyed	Yes	Yes	Yes	Yes	Yes	Yes	Not surveyed	Not surveyed	Yes	Yes	Not surveyed	Yes	No	Yes	Yes	Yes	Yes
Hd		\$	5.1	5.7	5.8	7.8	6.1	9	89	7	4.7	4.5	9.9	5.2	40	5.1	6.4	5.9	7.6	6.4	5.6
Lake name		Acid	Amikogaming	Artist	A Y. Jackson	Baie Fine	Balsam	Beaver	Beil	Betty.	Billy	Bızhiw	Bodina	Boundary.	Bunnyrabbit	Burke	Canis	Carlyle	Casson	Cat	Cave

Table 19 (cont.). List of mayfly species captured by lake. Number of mayflies collected during May (1996 & 1997) by turning over rocks is given. Species found by turning over rocks during July 1995 indicated by #. Number of mayflies collected by summertime sweepnetting indicated by *.

		_								$\overline{}$	_				$\overline{}$				$\overline{}$
Siphionuridae	Siphlonurus																		
	Stenacroe Interpunctatum						1°, 4		21, 2*		6	16, 15•	18	\$				8, 1 *	17,#
Heptageniidee	Stenonema																		
	Stenonema						23, 4•		4.		17	4, 4*	2.6*					17, 1*	1,8
Leptophlebildae	Chierwterpes Leptophiebla basalio					_	4	12	7		3		2					6	4
]	Chloruterpes basalfe										-								
Ephemerelldae	Eurylophella temporalis							£,				3•			•1			٠ll	3. 121•
Caentdae	Caenis												<u>.</u>						
dae	Ceilibaetis																		
Baetidae	Proclocon							_											
Sweepnetting date		July26 / 95	August 24 / 95	August 17 / 95	June 2, 3 / 96	June3 / 96	August 14 / 96	June 10 / 96	August 1/95	May 30 / 95	36/6 1sngn&	June 18,20 / 96	August 2 / 95	August18 / 95	June 14 / 95	Not surveyed	June 8 / 96	June 25 / 96	June 14 / 95
Clean rock substrate	(1996 or 1997) survey	Not surreyed	Not surveyed	No	Yes	No	Yes	Yes	Yes	No, lots of detains around rock	, , s	Yes	Yes	No. Swampy, few rocks.	No Silty, swampy.	Yes	Yes	Yes	Yes
H		4.7	4.9	6.1	6.5	5.4	9:9	\$	\$.9	v,	7.1	5.7	6.2	62	\$.5	net measured	97	19	8.8
Lake name	,	Chain	Clearsilver	Cranberry Bog	Crater East	Crater West	Cuckoo	David	Deacon	de Lamorandiere	East Howry	Fish	Fox	Frank	Freeland	Freeland outlet stream	Gail	Gem	George

Table 19 (cont.). List of mayfly species captured by lake. Number of mayflies collected during May (1996 & 1997) by turning over rocks is given. Species found by turning over rocks during July 1995 indicated by #. Number of mayflies collected by summertime sweepnetting indicated by *.

Lake name	Hd	Clean rock substrate	Sweepnetting date	Bac	Baetidae	Caenidae	Caenidae Ephemervilidae	Leptophleblidae	leblidae	-	Heptageniidae	•	Siphlonuridae
		(1996 or 1997) survey		Proctoeon	Callibactis	Caemts	Eurytophella Chloroterpea Leptophlebía temporalis basalia	Chloroterpes basalis	Leptophlebía	Stenonema femoratum	Stenonema modestum	Stenacron Interpunctatum	Siphlonurus
	6.2	Yes	June 20 / 96			-8	1, 1•		3	-			
Goschen	6.2	Yes, but very little	Aug 12 / 97	1 Baetidae	genus unknown				2	2.		21	
	\$1	No. Detritus bottom	Aug 1 / 97										
Great Mountain	5.3	Yes	June 11 / 96						2, 2*			7	
	4.9	Not surveyed	July3 / 96										
Grow	9:9	Yes	June 19 / 96				31•					12	
Hanwood	6.4)'ਲ	July21 / 96		30•	2₽	•1			6		9 0	
Harry	6.3	Уe	August20 / 95	-						13, 2*		2	
Heaven	8 4	Not surveyed	96 / 81 Ánr										
Helen	6.3	Yes	July 6 / 95							13		8	
Hemlock	4.7	Marginal, few rocks.	July24 / 96										
Номту	63	Yes	June 25 / 96				1,7			20, 1		2	
Houny Creek	:	Yes	Not surveyed								9	-	
Ishmael	6.5	Yes	56 / 9kjnf			3.	١٠			7		14	
Johnnie	5.6	Yes	July4,13 / 95				•1					16, #	
Kakakise	6.3	Yes	June 21 / 95				١.		3	6, 4*		13, 4	
Kidney	5.3	No. Few rocks, algae.	June 14 / 96										
Killamey	5.1	Yes	May16 / 95										
Lake of the Woods	4.9	Not surveyed	September 14 / 96										

Table 19 (cont.). List of mayfly species captured by lake. Number of mayflies collected during May (1996 & 1997) by turning over rocks is given. Species found by turning over rocks during July 1995 indicated by #. Number of mayflies collected by summertime sweepnetting indicated by *.

	Ħ	Clean rock substrate	Sweepnetting date	Bact	Bactidae	Caenidae	Ephamerelli dae	Leptophlebiidae	leblidae	H	Heptagenlidae		Siphlonuridae
		(1996 or 1997) survey		Proctoeon	Callibaetis	Caenis	Eurylophella temporalis	Eurytophella Chloroterpes Leptophlebla temporalis basalis	Leptophlebia	Stenonema	Stenonema	Stenaction atterpunctatum	Siphionurus
Leech	6.9	Yes	June 7 / 97			15*	23*		23			-	
Liule Bell	4.6	Not surreyed	July25 / 95										
Little Leech	7.1	1'68	June 9 / 97			1.	•6		12	80		8	
Liule Mink	6.7	Yes	June 9 / 97			\$ 4			1	10.24		78	
Little Mountain	5.1	Yea	June\$ / 96		·								
Little Mountaun outlet stream	not measured	Yes	Not surveyed										
Little Sheguiandah	6.1	Yes	May 25 / 95			•6	37*		•1	20. #		#*l	
Little Superior	4.3	Not surveyed	76 / St yluf										
Log Boom	5.5	Yes	June 28 / 95				3,11*		5			10	
			June 20 / 97			13*	36•		•1				
Low	7.2	Yes	30/11/jug				1.			10		\$	
Lumsden	5.2	Yes	June 2 / 95										
Mink	6.3	Yes	June 3-7 / 97				1.1			4		1•, 26	
Muriel	5.1	Yes	July 6 / 97										
Nuray	6.2	Yes	June 7/97			•6	4.			\$		6	
Nellie +Carmicheal	4.6	Yes	June 18 / 97										
Norway	5.1	Yes	June 10, 11 / 96										
Notch Creek	not measured	Yes	Not surveyed										
O.S.A.	4.8	Yes	May 15 / 95										
Partridge	5.7	Yes	June 8 1 / 96										

Table 19 (cont.). List of maytly species captured by lake. Number of mayflies collected during May (1996 & 1997) by turning over rocks is given. Species found by turning over rocks during July 1995 indicated by #. Number of mayflies collected by summertime sweepnetting indicated by *.

Lake name	Hq	Clean rock substrate	Sweepnetting date	Bac	Baetidae	Caenidae	Ephemerellidae	Leptophlebildae	ebiidae	=	Heptageniidae		Siphionuridae
		(1996 1997) survey		Procloeon	Callibactis	Caenls	Eurylophella temporalis	Chloroterpes Leptophichia basalis	Aptophichia	Stenonema	Stenonema	Stenacron	Siphionurus
Patten	5.1	No. Silt, swampy:	July9 / 96										
Pearl	5.3	Yes	July8 / 96										
Pearl outlet stream	род шевялися	Yes	Not surreyed										
Peter	6.5	Yes	July21-27 / 97			-	-		-	-		29	
Prke	5.6	Yes	August 19 / 95						۶	2		~	
Proulx	4.5	Not surveyed	July16 / 97										
Quartzite	80	Not surveyed	Aug 3 / 97										
Rocky	9.9	Yes	June 22 / 96			•9	11•			26			
Roque	S	Ϋ́ся	Nfay28 / 95										
Round Otter	6.2	Yes	June 23 / 96			•1	-91			81		3	
RuthRoy	67	Marginal, Silty	June 29 / 95										
Sandy	5.1	Marginal, Silty	June 6 / 96										
Scaley's	1.9	No. Swampy	August8 / 95										
Shingwak	7.7	Not surveyed	76/71ýluf										
Silver	5	Not surveyed	July 16 / 96										
Solomon	5.6	Yes	May27/95										
Spark	4.5	Yes	July6 / 96										
Trackop	6.5	Yes	June 27,28 / 96				15.		*	50, 1•		۰	
Teardrep caulet at OSA	not measured	Not surveyed	Oct. 11 / 97				4						
Teny	2.4	Yes	June 8 / 95				45.		138			-1	

Table 19 (cont.). List of mayfly species captured by lake. Number of mayflies collected during May (1996 & 1997) by turning over rocks is given. Species found by turning over rocks during July 1995 indicated by #. Number of mayflies collected by summertime sweepnetting indicated by *.

I she name	170	Clean mek substrate	Sweenpetting date	Base	Baceldae	Cacaidae	Ephemerellidae	Lentonhichlidae	hildee	=	Hentaseniklas	Γ.	Slohlonuridae
		Found during May (1996 or 1997) survey		Proctoeon	Callibactis		Eurylophella Chloroterpes Leptophlebla temporalis basaits	Chloroterpes	eptophlebla	Stenonema	Stenonema	Streates	Siphionurus
Тисспатомя	8.8	1'63	July23 / 96				•1			5		22	
Topaz	97	Yes	96 / 6arul										
TriLakes North	6.7	Yes	August]7/96				1		7	3		17	
TriLakes Southeast	6.5	Yes	August 16 / 96				٦		9	2,1•		%	
TriLakes Southwest	6.3	Yes	36/91/jn/						6			23	
Turbid	5	Not surveyed	August7 / 96										
Turtleback	5.1	Not surveyed	79 / OCHUL										
Van	6.2	Yes	July23 / 96							\$		2	
Van Winkle	9.6	1'es	July9 / 96			-			1	12		\$	
Wagon Road	Ŷ	Marginal Silt	May29 / 95			•5,							
Whiskeyjack	4.6	Not surveyed	July25 / 96										
York	1.9	Yes	July 5 / 96				3.			12,4		12, 15•	
3 4	4.5	Not surveyed	Aug 16 / 97										
Гн	5	Not surveyed	Aug. 15/97										
6#	4.9	Not surveyed	Aug 17/97										
एटिय	.d ∞	Not surveyed	Aug 4/97										
#25	89.	Not surveyed	Aug 5/97										
H27	5.1	Not surveyed	Aug 2/97										
#28	4.9	Not surveyed	July31 / 97										
N729	4.3	Not surveyed	July31 / 97										

Table 19 (cont.). List of mayfly species captured by lake. Number of mayflies collected during May (1996 & 1997) by turning over rocks is given. Species found by turning over rocks during July 1995 indicated by #. Number of mayflies collected by summertime sweepnetting indicated by *.

Lake name	H	Clean rock substrate found durbne May	Sweepnetting date	Bae	Baetidae	Caenidae	Caenidae Ephemerellidae	Leptophieblidae	le blidae	H	Heptagenlidae		Siphlonuridae
		(1996 or 1997) survey		Procloeon	Callibaetis	Caenti	Eurytophella (Chloroterpes basalis	Eurylophella Chloroterpes Leptophlebla Stenonema temporalis basalis	-	Stenonema	Stenacren	Siphionurus
я30	90.7	Not surveyed	July 30 / 97										
B33	5.1	No. swiempy.	Not surveyed										
1136	5.9	No. All muck - beaver pond	Not done										6
#37A	6.2	Yes	July6 / 96			2.	•90			9		10, 7	
445	4.9	Not surveyed	Aug 13 / 97			9,79							
M-16	63	No. muck/detritus bottom	Not done										
#88	6.4	Yes	July 16 / 96				1			17		16, 1•	
±9¤	5.3	Marginal, Dirty	Sept 9 / 95, July 19 / 97										
ре 2	5.5	Yes	Sept16 / 95, July20 / 97										
99н	5.3	Yes	Sept 17 / 95, July 22 / 97										
898	5.4	Yes	Not done						2				
#69	5	Yes	May 26, June 22 / 95										
474	6.1	Yes	July:15 / 97			•1				10		13	
92#	7	Yes	July6 / 97		şc	12•			3	n		2	
	nu)	pH Range (number of sites)		6.2	6.2 - 7.0	4.9 - 7.1 (23)	(23) (43)	7:1	5.0 - 7.6 5.6 - 7.6 (34) (46)	5.6 - 7.6 (46)	(E)	5.3 - 7.6 (55)	63 E

Figure 23. Location of lakes with Stenonema femoratum

Table 20. List of amphipods captured by lake.

Lake	pHt	Hvalella azteca	Gammaridae	Lake	рН	Hyalella azieca	Gammaridae.
Artist	5.7	1	0	Leech	6.9	24	0
A.Y. Jackson	5,8	20	1	Little Leech	7.1	30	0
Balsam	6.1	30	ı	Little Mink	6.7	27	0
Beaver	6	73	0	Little Sheguiandah	6.1	23	1
Bell	5.9	84	1	Low (1995)	7.2	21	0
Bodina	6.6	141	0	(1997 intensive)		312	2
Boundary	5.2	0	4	Mink	6.3	27	0
Canis	6.4	18	0	Murray	6.2	34	0
Carlyle	5.9	16	0	O.S.A.	4,8	0	2
Casson	7,6	16	0	Peter	6,5	31	0
Cat	6,4	71	0	Pike	5.6	23	0
Cuckoo	6.6	4	0	Rocky	6.6	38	0
Deacon	5.9	11	0	Round Otter	6.2	33	0
East Howry	7.3	3	0	Sandy	5.1	0	2
Fish	5,7	11	0	Teardrop	6.5	1	2
Fox	6.2	10	0	Teardrop outlet at O.S.A	not measured	0	19
Frank	6.2	2	0	Тепу	5.4	0	2
Gem	6.1	46	0	Threenarrows	5.8	37	0
George (1997 intensive)	5,8	5	7	TriLakes N	6.7	12	0
Goose	6.2	31	0	TriLakes SE	6.5	12	0
Goschen	6.2	27	0	TriLakes SW	6,3	56	0
Great Mountain	5.4	0	- 11	Van	6.2	32	1
Grow	6.6	37	0	Van Winkle	6.6	53	I
Hanwood	6.4	7	0	York	6.1	12	0
Натту	6.3	23	0	#37A	6.2	13	0
Helen	6.3	5	0	#59	6.4	9	0
Ножту	6.3	45	0	#65	5.5	0	8
Ishmael	6.5	27	0	#66	5.3	0	4
Johnnie (1995)	5.6	2	0	#74	6.1	14	0
(1997)		20	0	#76	7	18	0
Kakakise	6.3	16	0				

Figure 24. Location of lakes with Hyalella azteca

Within-lake Invertebrate Spatial Distributions

In the circumneutral reference lake (Low Lake) the mayfly (Figures 25 and 26) and amphipod (Figure 27) species were collected at all (100%) of the sampling sites. Catches were patchy for the crayfish, Orconectes propinguus (35% of the sites) (Figure 28).

The distributions of acid-sensitive species within the lake exhibiting chemical recovery (George Lake) were more limited, reflecting recent recolonization (Orconectes propinquus at 1.8% of sites; Stenacron interpunctatum at 23% of sites; Stenanema femoratum <1% of sites; Hyallela azteca <6% of sites). The one location in George Lake that contained all four acid-sensitive species was adjacent to Little Sheguiandah Lake, which is a less acidic refuge site that is serving as a source of colonizers.

The acid-tolerant crayfish <u>Cambarus robustus</u> was captured at only 39.8% of the sampling sites in George Lake and at 87% of the sites in Low Lake (Figure 29). The apparent absence of crayfish from many sites in both George and Low Lakes may simply reflect the difficulty in sampling these very mobile animals.

The results of this study indicate that sampling a small number of random sites in a lake may not be sufficient to detect benthic invertebrate colonization in its earliest stages. Monitoring programs should: (1) concentrate sampling near the expected point of immigration, if the source of colonizers and route of migration is known; and (2) sample all suitable habitat within a lake, if the source and route of migration are unpredictable or if the species is particularly mobile.

Chikanishing River Invertebrates

In the past the Chikanishing River has experienced low-pH episodes during spring snowmelt. During the late 1970's depressions to pH 4.8 were recorded at C3 (MOE unpublished data), but since then there has been a trend to increasing pH and decreasing severity of the episodic pH depressions. By 1986-1988 the lowest springtime pH measured at C3 had risen to 5.2 (Curry et al 1991). In general, C3 had better water quality than the two upstream sites (Curry and Powles 1991). This difference in pH between sites was also apparent in 1995-1996 (mean pH's: 5.7 at C1; 5.8 at C2; 5.9 at C3). In addition to the higher pH, the toxicity of water at C3 may also be reduced by DOC inputs from Lumsden Creek which enters the Chikanishing River between C2 and C3 (Hulsman et al 1983).

The presence of acid-sensitive mayflies suggests that the water quality at C3 has improved since the early 1980's. Mayflies were not present in 1981 adjacent to the highway bridge (Ron Griffiths, pers. comm.), about 40 m upstream of C3, but they are now common at that location (Table 21). The sweepnet sample about 20 m upstream of the bridge in May 1997 captured 7 mayflies (1 Eurylophella, 2 Leptophlebia, 4 Stenacron interpunctatum). In 1985-1986 only two mayflies were captured in the 12 surber samples at C3 (Al Curry unpublished data), but ten years later the total number captured increased to 48 and all 12 surber samples at that site contained

mayflies. The most abundant mayfly in the surbers was <u>Stenacron interpunctatum</u> (24 captured), a moderately acid-sensitive species found during our survey only in lakes with $pH \ge 5.3$.

At C2 only four mayflies from two taxa (Ephemerella and Tricorythodes) were collected in 1986 and two from one taxon (Eurylophella) in 1996. None were collected at C1 in either year. The absence of Stenacron interpunctatum at C2 and total absence of mayflies at C1 may indicate that recolonization has not yet occurred at those sites. Alternatively, episodic pH depressions that are lethal to mayflies may still be occurring in the upper part of the river.

Differences in species captured during the 1986 and 1996 sampling are apparent, but a more detailed comparison of our results with those of Curry and Powles (1991) will require much more thought and may be problematic due to: (1) the absence of a circumneutral reference site; and (2) the unavailability of samples from the first study to confirm species identifications.

Amphibians, Reptiles, Birds, Mammals

We observed 11 species of amphibians including 7 frog species, 15 species of aquatic or fisheating birds, 5 species of aquatic mammals, and 6 species of reptiles (Table 22). The most common frog species observed as adults was the green frog (24 lakes). Mudpuppies were captured in 10 lowland lakes. The most common turtle species was the snapping turtle (26 lakes). The most common fish-eating birds were loons (65 lakes) and great blue heron (42 lakes). Fisheating mammals such as mink and otter were observed infrequently.

The 1973 park species list (MacDonald 1973) contained 5 amphibians (red-backed salamander, American toad, mink frog, northern leopard frog, green frog), 3 reptiles (bandings turtle, eastern garter snake, northern water snake), and 104 birds. Bird species that we observed, but were not included in the 1973 list are: double-crested cormorant, hooded merganser, sandhill crane, and wood duck. Cormorant populations on Lake Huron have increased in abundance over the past decade and this is reflected in the increased occurence of that species on the inland lakes.

The 1996 CWS helicopter survey of breeding birds (Appendix J) documented the following 14 bird species that were not identified by the lake survey crews and 4 of these (indicated by *) were not on the 1973 list: spotted sandpiper, greenwing teal *, killdeer, redtailed hawk, ringnecked duck, turkey vulture, black duck, broadwinged hawk *, caspian tern, common snipe *, bufflehead, eastern kingbird, solitary sandpiper *, unknown yellowlegs.

Figure 25. Capture locations for Stenonema femoratum in Low and George Lakes

Figure 26. Capture locations for Stenacron interpunctatum in Low and George Lakes

Figure 27. Capture locations for Hyalella azteca in Low and George Lakes

Figure 28. Capture locations for Orconectes propinquus in Low and George Lakes

Figure 29. Capture locations for Cambarus robustus in Low and George Lakes

Table 21. Invertebrates collected in Chikanishing River during winter of 1995 - 1996 at three sites downstream of George Lake. (#) = Mayfly species captured in sweepnet, but not in surber.

Sampling Site (Distance from George Lake)	C1 (10 m)	C2 (1000 m)	C3 (1800 m)
MAYFLIES			
Baetidae			
Centroptilum			X (#)
Ephemerellidae			
Eurylophella		X	X
Ephemeridae			.,
Ephemera simulans Heptageniidae			X
Stenacron interpunctatum			Х
Leptophlebiidae			Λ.
Leptophlebia		X (#)	X
Metretopodidae			
Siphlopecton basale		X (#)	X (#)
STONEFLIES			
Nemouridae			
Shipsa rotunda	X	х	X
CADDISFLIES			
Hydropsychidae			
Cheumatopsyche	X	X	X
Hydropsyche betteni	X	X	
Hydropsyche sparna	X	X	
Hydropsyche spp.	X		
Limnephilidae		v	v
Pycnopsyche Polycentropodidae		Х	X
Neureclipsis	х		
Polycentropus	Λ	х	Х
Sericostomatidae			4
Agarodes	X		
	·		
DRAGONFLIES			
Cordulegastridae			
Cordulegaster obliquus		X	
Gomphidae		X	X

Table 21 (cont.). Invertebrates collected in Chikanishing River 1995-96 at three sites downstream of George Lake.

Sampling Site (Distance from George Lake)	C1 (10 m)	C2 (1000 m)	C3 (180	0 m)
TRUE FLIES				
Ceratopogonidae	X			
Chironomidae				
Cricotopus	X	X	X	
Eukiefferiella	X		X	
Glyptotendipes	X			
Micropsectra	X			
Microtendipes	X			
Paralauterborniella			X	
Rheotanytarsus		X	X	
Stempellina	X			
Thienemannimyia-gp	X	X	X	
Simuliidae	X	X	X	
Tipulidae				
Dicranota	X	X	X	
Pilaria	X			
Tipula	X	Х		
AMPHIPODS				
Gammaridae				
Crangonyx	X		X	
ISOPODS				
Asellidae				
Caecidotea	X			
SNAILS				
Viviparacea				
Campeloma decisum			X	
•				
WORMS				
Lumbriculidae	X	X	X	
Tubificidae-immature			X	
FLATWORMS				
Tricladida	X			

Table 22. Animals observed during biological surveys.

2. 12 =	1	8		-	4	Amphibians	Siens	2	-			E	-						Birds		3	3	1			1		Z	Mammals	als				Rej	Reptiles		
Lake	Tad AT	17	4	BF GF LF MP	D.	4	SP TP WP Mud	1	4	- Pag	SIN	3	CC CM	CM	è	Car CBH GE	Ged	HIM	KJe	HM Kin Leo	MH,	Osb	S	Ter	11	M.D	Bes		Min Mos Mus	Mos	Oet	14	EMS	S GS	K	ST	SM
A.Y. Jackson		\vdash		\vdash	\vdash	\vdash	\vdash	Т		×	Г			×		Г				×		×		_	$ldsymbol{ldsymbol{ldsymbol{eta}}}$	$oxed{oxed}$	\vdash	<u> </u>		_	L	_	_	\vdash	L		
Acid	×	-	\vdash	\vdash	-	\vdash	\vdash	\vdash									×			×			<u> </u>					_			_	<u> </u>	<u> </u>	<u> </u>			
Amikogaming	×			-																×							×									×	
Artist				-												×				×			$oxed{oxed}$			×		_									
Belsem						\vdash	\vdash									Г																	_	ldash			
Beaver		\vdash	\vdash		×	\vdash	-									×	×			×		×				<u> </u>				<u> </u>	_	<u> </u>					
Bell	×	-	\vdash	×	\vdash	-	Т			×				×						×					<u> </u>		_			<u> </u>	ļ	<u> </u>	_				
Betty		\vdash	\vdash	 	\vdash	\vdash	Т	 									×			×			<u></u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			
Billy	×		\vdash		\vdash	\vdash	Т							×		×		×		×			<u></u>			_		_	_			<u> </u>	_	<u> </u>			L
Birbiw				-				_																		$oxed{oxed}$			_	<u> </u>		<u> </u>					
Bodina	×		H													×	×			×						$oxed{oxed}$		<u> </u>		<u> </u>	_	<u> </u>		ldash		×	×
Boundary	×		Н	\vdash	\vdash											×				×							×	<u> </u>				ļ	×			×	
Bunnyrabbit			\vdash	_																×										_	lacksquare	<u> </u>	_	<u> </u>	_		
Burke				\vdash																								_				<u> </u>		<u> </u>			
Cents					\vdash											×	×			×				×		<u> </u>		<u> </u>			×	ldash		ldash		×	
Cartyle	×		Н		\vdash		Н			×				×	×	×				×				×	Ш	Щ	Щ	Щ				Щ		Ш	×	×	
Casson	×			×	×											×				×							×										×
Cat			Н	×			Н							х			×			×														×	×	×	
Cave		\vdash	Н	\vdash	\vdash	Н				\Box				×		×	×							Щ		Щ		Щ		Щ		Щ					
Chain	×	_							_						Chaire X																						

Table 22 (cont.). Animals observed during biological surveys.

Lake Tad AT				9	THE PARTY			į	1	í							\$ \$1000 PM						į	ģ				2	à			Acpuica	3		B
	_	BF G	GP L	LP M	MF S	SF 1		TP WP Mud		RSN Sel		O	Cer	CC CM Cer 5BH GE		H	Gul HM Kin	1 [ee	o MIL	Osp	36	Ter	11	WD	P.	Min Moo	Moo	Mas	ĕ	1	EMS	8	E	72	WS
Cleantilver								-	_						\vdash		\vdash	×	_								_					\vdash	 		П
Cras. Bog. 1995	\vdash	\vdash	\vdash	\vdash					_				×		\vdash	\vdash	\vdash	×				lacksquare										\vdash			П
Cras. Bog-1997	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	-			L				×	\vdash	\vdash	\vdash	×			igspace		Ĺ		×		\vdash	Т	Т	\vdash		\vdash	 	\vdash	П
Crater East X	\vdash	\vdash	\vdash	\vdash		-				×					\vdash	\vdash	\vdash	\vdash			_							Т	Т	Т		\vdash	×	\vdash	П
Crater West X			\vdash	\vdash	-	-	\vdash	-	-	_	_				\vdash	\vdash	-	\vdash	_	_							\vdash	\vdash	Т	\vdash	\vdash		1	\vdash	П
Cactoo				-	-	-			_	<u> </u>	_				\vdash	\vdash	\vdash	×		_	<u> </u>							\vdash	Т	Г			├─	\vdash	
David X		<u> </u>	×	 	-	-		-			_	×		×		\vdash	\vdash	×			\vdash						×			Г			1	×	
Descon X		\vdash				-			×		_			×			\vdash	×	\vdash		_						Т		Т	П	\vdash	Т	-		
de Lamorand.		\vdash	\vdash			\vdash	\vdash	-				×					-	-	\vdash		_						Т	\vdash		Т	 	\vdash			П
East Howry		\vdash		\vdash		\vdash	\vdash						×	×	Ĥ	×	-	×	\vdash			_					Т	Т					 		П
Fish X		\vdash				\vdash						×		×	Ĥ	×		×	_		×				×			×			\vdash	┢	┢	×	
Fot X								_							\vdash			_													\vdash	_	┢		
Frank X		\vdash					_								\vdash	-	-	\vdash			_	L					 	\vdash					\vdash	\vdash	
Freeland - 1995	×		×										×	×	Ĥ	×	×	×		×	_						_	Т	×			╁	×	×	П
Freeland - 1997 X		\vdash	×			Н	\vdash	H	×			×	×	×	×	×		×	×	×					×		-	_			Т		×	×	
Cell	$\vdash \vdash$	$\vdash\vdash$	$\vdash \vdash$		-			Н									-	×	_						×		\vdash			\vdash		Т	_	Т	
Cee ×	\vdash	\dashv	$\vdash \vdash$		\vdash		\vdash	\vdash				Ш			Ĥ	×		×				×								Т		_	×	×	\Box
- Ceerge		_	×					\vdash						×				×	<u> </u>	_	_					×			Г	Т	Н	┢	\vdash	\vdash	<u> </u>
Caose-1996 X		\vdash	×	L.	\vdash	\vdash		 	_					-				\vdash		_	<u> </u>						\vdash	\vdash		Т		╁╌	\vdash	\vdash	П
Goose-1997	\vdash		-	\vdash	$\vdash\vdash$	Н		-		$oxed{oxed}$					-			\vdash		_							\vdash	Т	Т	Т	1	\vdash		\vdash	П
Coschen X		_	_	_											ŕ	×	\vdash	×	\vdash	L							T	Т	Г	Т	\vdash	\vdash	H	Н	Г

CO-Canda Goost, CM-Common Merginier, Cor-Dooblecaned Commonat, RM-Hooded Merginier, GBH-Great Blue Heron, GE-Golden Eye, Gul-Gulf. Kin-Kingfaber, Loo-Loon, ML-Maillard, Oxp-Oxprey, SC-Sandhill Crine; Ter-Ten, TL-Fail, WD-Wood duck MANDAMALS: Bea-Beaver, Min-Mink, Noo-Moost, Ma-Malentine, Ott-One REPTILES: BT-Banding Turk, EMS-Easten Milk Snake, GS-Gutter Snake, PT-Painted Turk, ST-Snapping Turk, WS-Water Snake

Table 22 (cont.). Animals observed during biological surveys.

100		H	4 d	8 9 D' F	Į	9	Amphiblans	E	No.				1					8	B	Birds	3				8				"Mammale			ų.		Rep	Reptiles	80	
Lake	Tad AT BP	T B	100	3	CP LP MG	14	SF T	TP WP Mud	N N	_	SNS	3	8	CM	S. C.	CBH GE		E I	HM Kin	in Loo	MIL.	L Osp	26	C Ter	# TL	L WD	D Bes	Min Min		Moo Mus	8	10	EMS	8	Z	51	WS
Grace	×		1-	×													×	-		×		-	-														
Grew			1	×	×		-		-						^	×	1	-	-	×	-				-	-	_	-	4			_		×	ĵ.	17	
Grt. Mountain	×				-		931							\vdash			^	×	-	×				-	<u> </u>	\vdash				<u> </u>	_	<u> </u>					
Grey	×		F	×							\vdash		\vdash	-	Ĥ	×	-	\vdash		×	,,	\vdash				\vdash	\vdash	<u> </u>			<u> </u>	<u> </u>	<u> </u>				
Hanneed	×		\vdash	\vdash	<u> </u>	\vdash								Ĥ	×	\vdash	Ļ	×		×	<u> </u>					\vdash	\vdash	-	\vdash	<u> </u>			_				
Namy	×	×		×	×	\vdash	-	_	-		-				$\hat{\vdash}$	×	\vdash			×	<u>.</u>			×			-	\vdash	\vdash	<u> </u>		<u> </u>			×	×	
Heaves			Ĥ	×	\vdash	\vdash	 			-	\vdash	-				-	-				\vdash					_	\vdash	\vdash	H			_					
Helen			_		_		\vdash						\vdash	Ĥ	×	×	<u> </u>	×	\vdash	×	L.			_	\vdash	\vdash	\vdash	\vdash	<u> </u>	<u> </u>	_						
Hemleck		H	\vdash	\vdash	-	 			\vdash		\vdash						\vdash						_				\vdash			_							
Howay		Н	$\vdash \vdash$	\vdash		\vdash			\vdash	Н			\vdash			×	Н	\vdash	\vdash	×	H		\vdash		\vdash	\vdash	\vdash				Щ	$oxed{oxed}$					
İshməel		<u> </u>	×	×	×	\vdash		\vdash	$\vdash \vdash$		\vdash		-	×			<u> </u>	×		×				×	.,				Н		Ш						
Johnnie			\vdash	\vdash		\vdash	\vdash	\vdash	\vdash	\vdash	Н			×	×	×		\vdash	-	×				_				\vdash			Ш						
Kakakhe	×						\vdash	\vdash	<u> </u>	×				\vdash	Ĥ	×		<u> </u>	×		\vdash			×		\vdash	<u> </u>			_	<u> </u>	_				×	
Kidney	×					\vdash	\vdash	-			-		×					_					_									_					
Killamey		\vdash	\vdash			\vdash	×				-			×	-	_	\vdash	Ĥ	×	×						\vdash	\vdash	-	-		_	<u> </u>					×
Lake of Woods.	×	Н		\vdash			\vdash	\vdash			-			_		-	-		-						<u> </u>	-	<u> </u>					_					
Leech	×	-	\vdash	\vdash	—	\vdash			\vdash				\vdash		Ĥ	×		×		×	L L	×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	×		_	×	-	×	<u> </u>						×	×
Little Bell	×		\vdash	\vdash	\vdash	$\vdash\vdash$		$\vdash\vdash$	\vdash		\vdash		\vdash			\vdash					\vdash				H	\vdash		\vdash			<u> </u>						
Little Leach	×		\dashv	\dashv	\dashv	$\vdash\vdash$	$\vdash \vdash$	$\vdash \vdash$	\vdash		\dashv	\dashv	-	\vdash		×	$\hat{\mathbb{H}}$	×		×					\vdash		$\vdash\vdash$					Щ				×	
Little Mink	×	_						_								_		\vdash	H	<u> </u>	_	_	H	_	L	\vdash	\vdash	-	×	_	L	L	L		×	^	×

AXPHBIANS Tad-tadpole; AT-American Toad, BF-Bullifrog, GF-Green Frog, LF-Leopard Frog, MF-Mink Frog, SF-Spring Peeper Frog, WF-Wood Frog; WF-Wood Frog, MS-Malland, Opp-Osprey; SO-Sandhill Crane; Tar-Tan; TL-Tal, CC-Cunda Georg. CM-Common Merganser; Cor-Doublecerated Commonn; EM-Hooded Merganser; GBH-Great Blue Heron; GE-Golden Eye; Gul-Gull, Kin-Kingfisher; Loo-Loon; ML-Malland, Osp-Osprey; SO-Sandhill Crane; Tar-Tan; TL-Tal, WD-Wood duck MAMMALS; Bea-Beaver; Min-Mink, Moo-Moone, Mur-Muskra; On-Oner REPTILES: BT-Bandings Turle; EMS-Eastern Milk Snake; GS-Garter Snake; PT-Painted Turle; ST-Snapping Turle; WS-Water Snake

Table 22 (cont.). Animals observed during biological surveys.

HH Kin Kin		E,		題	100	~	Amphibians	Iblan	2	To.	10.3	1		Page 1	115	5		-		Ä	Birds	- '					ľ.	į.	🔻	Mammals	-2	Г	L		Reptiles	<u> </u>	'	
	4	Tad	AT	88	B	5	MGF	SF	F	WF	Mud	RSN	Sal	_		å	H	-	1	E K	12		5		_	_	_			Mo	Mus			EMS	છ	F	rs.	W.S
	Little Mountain									×				×			\vdash		\vdash	\vdash	Ļ~	J.	-		_	_	_	<u> </u>								\vdash	\vdash	
	La Shegulandah										×				×		-	\vdash	\vdash	Ĥ	<u> </u>		-			_	L	_							\vdash	\vdash		
	Little Superior	116																			ŕ	u u		<u> </u>	_	<u> </u>		_								\vdash		
	Log Boom										×					\Box	×						_	-	_	_	_								┰	Т		
X X	Low			×		×											×		×	Ĥ	×			_		<u> </u>	_									Т		×
	Lumsden					×	×		×								П		\vdash		ř	J.	×		_							×			_			×
	Mink	×	×														×	Н	Н		Ĭ.	L.	- × -		-	_		×		×						Т	×	
	Muriel	×															Н	Н	Н	\vdash	ř	Ų,	-	\vdash	\vdash										×		×	l
	Murray					×					×			×	×		×		Н				_		_	<u> </u>		×							×	×	×	
	NellielCarmiches				×			×											×			, u		<u> </u>		<u> </u>		×							×			
	Normay	×												×					\vdash		<u> </u>	Ų,		<u> </u>	_	<u> </u>									_			
	OSA							×							×	×					×	,,			_	<u> </u>											\Box	
	Partridge	×															_		-		ř	<u></u>		_	_	_									Т	\vdash		-
	Patten	×															×		-	-	\vdash				_		_								Н	\vdash		
	Pearl	×																_	-	-	\vdash	\vdash					_	L							Т	_		
	Peter	×									×					×	×	_	×	_	×			<u> </u>	×		_	_								\vdash	×	
	Pike	×			×	×											×		-		Ľ	<u> </u>		<u> </u>			<u> </u>									\vdash		
× × × × × × × × × × × × × × × × × × ×	Proulz																_					_			<u> </u>												\vdash	
×	Quartzite																	-	Н		×			_			_								\vdash		Г	Γ
	Rocky														_		×		×	\vdash	\vdash					_	_				×		×		Н	×	×	Г

AMPHBIANS Tad-tadpok: AT-American Toad, BF-Baliltog, GF-Green Frog. LF-Leopard Frog. MF-Mink Frog. SF-Spring Peeper Frog. TF-free Frog. WF-Wood Frog. Mad-Minkapppy, RSN-8cd Spotted New Castlemander, unknown up BIRDS CG-Canada Goose, CM-Common Merganser, Cor-Doublecreated Cormonant, HM-Hooded Merganser, GBH-Great Blue Heron, GE-Colden Eye, Gul-Gull, Kin-Kingfisher, Loc-Loon, ML-Mallard, Osp-Opprey, SC-Sandhill Crans, Ter-Ten, TL-Teal, WD-Wood duck MAMMALS, Bea-Beaver, Min-Mink, Moc-Moose, Mus-Mustra, Chr-Otter REPTILES. BT-Bandings Turde, EMS-Eastern Milk Snake, GS-Garter Snake, PT-Painted Turde, ST-Snasping Turde, WS-Water Snake

Table 22 (cont.). Animals observed during biological surveys.

			==		7	1	Amphibiens	1						14		5			-	Birds							20 A	鼬	MARINE	1	100	12	E S	100	Z.	Reptiles
Cale	TA beT		B.	BF GF LF MF SF		4	SF	1	TF WF Mud	==	RSN	Sel	90	CM Cer		HB	GE	Sel E	HUM	Kin	8	MILO	Osp	8	Ter 1	7	WD B	Bes	Min Me	- 8 I	Σ	Moe Mus O	ĕ	PE BT	PE BT	ĕ
Reque	×										×									П	\vdash	Н		Н	Н	Н	\vdash	Н	\vdash							
Round Orter	×	i i							\vdash							×		×			×								×			-				x
RuthRoy							\vdash									×			_			\vdash		\vdash			\vdash		\vdash			_				
Sandy	×																					-		-	 -		\vdash	-	-				_	_		
Scaley's			\Box																												$\overline{}$					
Shingwak	×	\vdash		×				\Box								\Box		\Box			×						\vdash	-				1				
Silver		\vdash	Н	\vdash			Н																		 		\vdash	-	-				_			
Solomon		×	$\vdash \vdash$	\vdash		×	Н									П			Н	\vdash	Н		\vdash	\vdash	\vdash											×
Spark		\vdash		\vdash	\vdash	\vdash	\vdash	\Box	\Box								П				Н	\vdash	Н		\vdash		\vdash		-		-		<u> </u>			
Teardrop		\dashv		×			\dashv			\neg					\Box	П	\Box		Н	\Box	Н	\vdash	$\vdash \vdash$	Н	Н	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash					
Terry	×	\dashv	\neg		\dashv	\vdash	\dashv	\neg							\Box	×			\vdash		×	H	\vdash	H	\vdash		\vdash	\vdash	\vdash	\vdash	\vdash		_			
Threenarrews	×	\dashv	\dashv		\vdash	\vdash	\vdash	\Box							×			×	\vdash		×			×				_								
Торых		\dashv			\vdash	\vdash	\vdash	\neg		\Box									Н		Н	Н									\vdash					
TriLakes N		\vdash	H	×	\Box		\vdash		\Box						\Box						×							 	×	<u> </u>		}				
TriLakes SE	×	-	\dashv	×	×	\vdash	Н												Н		×						-		_			,				
Trilakes SW		\dashv		×	\dashv	\vdash	Н									×			H		×	\vdash	Н	\vdash	\vdash		\vdash	\vdash		\vdash			<u> </u>			
Turbid	×	\vdash		×																	×	-	\vdash	<u> </u>	\vdash	-	\vdash	-			-		H			
Turfeback	×	\vdash	\vdash	\vdash																						_							H			
Van				×	\vdash											×					×							-	_	<u> </u>	<u> </u>		\vdash		_	
Wan 1875-61	,	-	H	H	Н	H	\vdash	Н	Г	Г				,		١,	Г	١,	r	H	H	H	H	-	+	-	H	\vdash	H	-	H		L			

AMPHBIANS Ted-adole, AT-American Toad, BF-Builfrog, GF-Green Frog, LF-Leopard Frog, MF-Mink Frog, SF-Spring Peeper Frog, TF-Tree Frog, WF-Wood Frog, Mud-Madpuppy, RSN-Red Spotted News, Sal-Salamander, unknown sp BiRDS:
CC-Cutada Goose, CM-Common Merganser, Cor-Doublecrested Cormorant, HM-Hooded Merganser, GBH-Great Blue Heron, GE-Golden Eye, Gal-Gall, Kin-Kingfuher, Loo-Loon, ML-Mailard, Osp-Osprey, SC-Sandhill Craw, Ter-Tern, TL-Teal,
WD-Wood duck MAMMALS. Bea-Beaver, Min-Mink, Moor-Moose, Mus-Mastrat, On-Otter REPTILES. BT-Bandings Turtle, EMS-Eastern Milk Snake, GS-Garter Snake, PT-Painted Turtle, ST-Snapping Turtle, WS-Water Snake

Table 22 (cont.). Animals observed during biological surveys.

Market M	三山湖			4		Ampirolana.						ĺ	ş	Ø					ā	DIG		H			H			2	Mammals	=	1		h	Kepules	3	9
	į	Tod		9		ME			¥	Σ	RSN	S		CM	Cor	BH	CE	Gul	IM	1-15		L O	ο. Or	Ē.	F to		ě.	E N	Mo	Mag	ě		SING			
	Wagon Road		-	<u> </u>	_		<u> </u>	_		<u> </u>	<u> </u>		<u> </u>			×	Г		-	-	×	F	Ţ	\vdash	H	H	\vdash	-	L	L.					Н	\vdash
	Whiskeyjack		_	_	<u> </u>	_	<u> </u>	<u> </u>	_	<u> </u>			<u> </u>						_		×	-	\vdash	-			 	-	<u> </u>	L					Г	
	Yerk	×	-	-	_	_	_	<u> </u>	<u> </u>	_	_	_				×				\vdash	×		-	-		-	-	ļ.	<u> </u>						\vdash	-
	¥	×	-		_	L	_	L	<u> </u>	_	_	_						\vdash	\vdash	\vdash	\vdash	\vdash	-	-	_	-	-	_	_					T	_	-
	•		-	-	_	\vdash	_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					-	-	\vdash	-	\vdash	-		-	-	\vdash	\vdash	_	_					1	\vdash	
			 -	-	-	_	_	_	<u> </u>	_	<u> </u>		_						-	-	-	-	\vdash	\vdash	-	\vdash	\vdash	<u> </u>	<u> </u>	L				_	\vdash	
	124		\vdash	 	-	_	_	_	_	_			_			Г	\vdash	-	\vdash	-	-	-	-	\vdash	\vdash	-	 —	<u> </u>	_							1
	82		\vdash	-	-	-	<u> </u>	_	<u> </u>	L_		_	_						_		-	-	 	-	\vdash	-	-	\vdash	<u> </u>					\vdash		\vdash
	128	×		-	<u> </u>		_	<u> </u>		<u> </u>	_	_	<u> </u>	_			\vdash			\vdash	-	\vdash		-	-		-	<u> </u>	<u> </u>		L			\vdash		\vdash
	823	×		<u> ×</u>	-	_	_														-	\vdash	-	-	-	<u> </u>	 	_	<u> </u>						\vdash	
	#29			_	_				_			<u> </u>												-		\vdash	\vdash	-	<u> </u>						1	_
	#30	×	×	\vdash		_		_	_	_	_	L	_						-	_		-		-		-	\vdash	-	<u> </u>						 	
	100		-	-		-		_	<u> </u>		_	_	_			×					×	-	-	\vdash		-	 ×		_		L			-		\vdash
	645	×	-	<u> </u>	_					<u> </u>	_	_	<u> </u>		×				\vdash		×	-	-	-	-	-		_	_							_
	659	×		<u> </u>	_	_	_	_	_			_									×		-	 	J	_		_	_							×
	779	×		<u> </u>			<u> </u>	_	_	<u> </u>			_	_			_				\vdash	-			-		\vdash	-	<u> </u>					\vdash		\vdash
	999	×		<u> </u>	_				_	<u> </u>		_							-	_		-				_	-	-	_		L					
	99#	×		<u> </u>								_					\Box			-		-	-	-		-			_							_
	69#		\vdash																		_	_	-	_	_			_	<u> </u> _	_				_	×	
×	92.0	×	\vdash		\vdash			Щ			_										×		-	_	-	-		_	<u> </u>							-
	F16		L	_	<u> </u>		_	L	_	_	<u>L</u> .	_	_				\vdash			\vdash	×	\vdash	\vdash	\vdash	-	\vdash	Ľ	<u> </u>	L			L			Г	×

CC-Cond. Gove. CM-Common Merganser, Cor-Doublecrased Commans. HM-Hooded Merganser, GBH-Great Blue Heron, GE-Golden Eye, Gul-Gull, Kin-Kingfisher, Loo-Loon, ML-Mallard, Osp-Osprey, SC-Sandhill Crane, Tra-Ten, TL-Teal, WD-Wood dark MANMALS. BeanBeaver, Min-Mirk, Moo-Moode, Mus-Mustral, Ott-Otter REPTILES: BT-Bandings Turtle, EMS-Eastern Milk Snake, GS-Garter Snake, PT-Painted Turtle, NS-Wager Snake.

REFERENCES

- Beamish, R.J., and H.H. Harvey. 1972. Acidification of the La Cloche Mountain Lakes, Ontario, and resulting fish mortalities. J. Fish. Res. Bd. Canada 29: 1131-1143.
- Beamish, R.J., G.A. McFarlane, J.C. VanLoon, and J. Lichwa. 1975. an examination of the possible effects of Sudbury nickel mining and smelting operations on fishes and the water Environment Canada Fisheries and Marine Service Technical Report 579.
- Beamish, R.J., and J.C. VanLoon. 1977. Precipitation loading of acid and heavy metals to a small acid lake near Sudbury, Ontario. J. Fish. Res. Board Can. 34: 649-658.
- Beggs, G.L., and J.M. Gunn. 1986. Response of lake trout (<u>Salvelinus namaycush</u>) and brook trout (<u>S. fontinalis</u>) to surface water acidification in Ontario. Wat. Air Soil Pollut. 30: 711-718.
- Bendell, B.E., and D.K. McNicol. 1991. An assessment of leeches (Hirudinea) as indicators of lake acidification. Can. J. Zool. 69: 130-133.
- Bouillon, D.F. 1995. Developments in emission control technologies/strategies: A case study. In J.M. Gunn [ed.] Restoration and Recovery of an Industrial Region. Springer-Verlag. New York.
- Card, K.D., D.G. Innes, and R.L. Debicki. 1977. Stratigraphy, sedimentology and petrology of the Huronian Supergroup in the Sudbury-Espanola area. Ontario Division of Mines, Geoscience Report GS16.
- Casselman, J.M., and H.H. Harvey. 1973. Fish traps of clear plastic. Prog. Fish. Cult. 35: 218-220.
- Cordiner, G.S. 1973. Brief geology and geomorphology of Killarney Provincial Park Northeastern region, Ontario. Ont. Min. Nat. Res., Environmental Planning Series Earth Science Report. Revised Edition. Vol. V
- Crocker, D.W. and D.W. Barr. 1968. Handbook of the crayfishes of Ontario. University of Toronto Press, Toronto.
- Curry, R.A., and P.M. Powles. 1991. The insect community in an outlet stream of an acidified lake. Naturaliste can. (Rev. Ecol. Syst.) 118: 27-34.
- Curry, R.A., P.M. Powles, V.A. Liimatainen, and J.M. Gunn. 1991. Emergence chronology of brook charr (Salvelinus fontinalis) alevins in an acidic stream. Envir. Biol. Fish. 31: 25-31.

- David, S.M., K.M. Somers, and R.A. Reid. 1994. Long-term trends in the relative abundance of crayfish from acid sensitive, softwater lakes in south central Ontario: a data summary for the first 5 years, 1988-1992. Ontario Ministry of Environment and Energy, Toronto.
- Davies, I.J. 1989. Population collapse of the crayfish Orconectes virilis in response to experimental whole-lake acidification. Can. J. Fish. Aquat. Sci. 46: 910-922.
- Debicki, R.L. 1982. Geology and scenery, Killarney Provincial Park area. Ontario Geological Survey Guidebook No. 6.
- Degerman, E., P. Nyberg, and M. Appelburg. 1988. Estimating the number of species and relative abundance of fish in oligotrophic Swedish lakes using multi-mesh gillnets. Nordic J. Freshw. Res. 64: 91-100.
- Dixit, A.S., S.S. Dixit, and J.P. Smol. 1992. Long-term trends in lake water pH and metal concentrations inferred from diatoms and chrysophytes in three lakes near Sudbury, Ontario. Can. J. Fish. Aquat. Sci. 49 (Suppl. 1): 17-24.
- Dodge, D.P., G.A. Goodchild, J.C. Tilt, D.G. Waldriff, and I. MacRitchie. 1987. Manual of instructions aquatic habitat inventory surveys. Ontario Ministry of Natural Resources, Toronto.
- Dolson, N, and V. Liimatainen. 1989. Sudbury District Brook Trout Atlas. Ontario Ministry of Natural Resources, Sudbury.
- Edmunds, G.F., Jr., S.L. Jensen, and L. Berner. 1976. The mayflies of North and Central America. Univ. Minnesota Press, Minneapolis.
- Gunn, J.M. and W. Keller. 1990. Biological recovery of an acid lake following reductions in industrial emissions of sulphur. Nature 345: 431-433.
- Harvey, H.H. and C. Lee. 1980. Report to Ontario Ministry of Natural Resources on the fishes of the La Cloche Mountain lakes of Ontario 1965-1980. Unpublished report.
- Hulsman, P.F., P.M. Powles, and J.M. Gunn. 1983. Mortality of walleye eggs and rainbow trout yolk-sac larvae in low-pH waters of the La Cloche Mountain area, Ontario. Trans. Am. Fish. Soc. 112: 680-688.
- Keller, W. and J.R. Pitblado. 1986. Water quality changes in Sudbury area lakes: a comparison of synoptic surveys in 1974-1976 and 1981-1983. Water Air Soil Pollut. 29: 285-296.
- Locke, A., W.G. Sprules, W. Keller, and J. R. Pitblado. 1994. Zooplankton communities and water chemistry of Sudbury area lakes: changes related to pH recovery. Can. J. Fish. Aquat. Sci. 51: 151-160.

- MacDonald, I.D. 1973. A preliminary ecological inventory of Killarney Provincial Park. Ont. Min. Nat. Res. Environmental Planning Series; Life Science Report Vol. IV, No. 12.
- Matuszek, J.E., J. Goodier, and D.L. Wales. 1990. The occurrence of cyprinidae and other small fish species in relation to pH in Ontario lakes. Trans. Am. Fish. Soc. 119: 850-861.
- Merrit, R.W. and K.W. Cummins. 1996. An introduction to the aquatic insects of North America. 3rd edition. Kendal/Hunt Publishing Company. Dubuque, Iowa.
- Ministry of Environment (MOE). 1984. Water management goals, policies, objectives and implementation procedures of the Ministry of the Environment. Technical Report. Toronto.
- Neary, B.P., P.J. Dillon, J.R. Munro, and B.J. Clark. 1990. The acidification of lakes: an assessment of their sensitivity and current status with respect to biological damage. Ont. Min. Environ. Rep., Toronto.
- Nyberg, P. and E. Degerman. 1988. Standardized test fishing with survey nets. Inform. Inst. Freshw. Res. Drottningholm (7). (Swedish with English summary).
- Pennak, R.W. 1978. Fresh-water invertebrates of the United States. 2nd edition. John Wiley and Sons, New York.
- Polkinghorne, D. and J. Gunn. 1981. Sudbury District Lake Trout Lakes ... a description of the lakes and the changes produced by man. Ontario Ministry of Natural Resources, Sudbury, Unpublished report.
- Robbins, W.H., and H.R. MacCrimmon. 1974. The blackbasses of America and overseas. Biomanagement and Research Enterprises, Sault Ste. Marie, Ontario.
- Scott, W.B. and E.J. Crossman. 1973. Freshwater fishes of Canada. Fish. Res. Board Can. Bulletin 184.
- Snucins, E.J. and B.J. Shuter. 1991. Survival of introduced smallmouth bass in low-pH lakes. Trans. Am. Fish. Soc. 120: 209-216.
- Stephenson, M., and G.L. Mackie. 1986. Lake acidification as a limiting factor in the distribution of the freshwater amphipod <u>Hyallela azteca</u>. Can. J. Fish. Aquat. Sci. 43: 288-192.
- Thorp, J.H. and A.P. Covich (eds.). 1991. Ecology and classification of North American freshwater invertebrates. Academic Press Ltd., London.

APPENDIX A

h ...

1996 Water Sampling Methods and Results

Ed Snucins, Cooperative Freshwater Ecology Unit, Sudbury

Geographic Locations, Surface Areas and Watershed Areas

Digital OBM maps (scale 1:20,000; geodetic datum NAD83) were supplied by the Provinical Mapping Office. Geographic location, lake surface area and watershed area for each sampled lake were obtained from the maps using MAPINFO software.

Sampling Techniques

Access:

helicopter

Winter:

5 m tube composite

Summer:

surface grab

Tube composite method description:

Tube composite water samples were collected from the lakes through a hole drilled in the ice. A length of 2.5 cm diameter Tygon tubing was lowered to a depth of 5 m (or to 1 m off bottom in shallower lakes), clamped at water level, then raised to the surface. The tube contents were emptied into a 10 L plastic jug. This procedure was repeated until sufficient water was collected in the jug to completely fill eight 500 ml polystyrene bottles. All containers were rinsed at least twice with the sample. Samples were stored in the dark and kept refrigerated. Samples for analysis of dissolved metals were acidified with 1 ml nitric acid.

Surface grab method description:

Surface grab samples were obtained at mid-lake. All sample containers (500 ml polystyrene bottles) were rinsed at least twice with lake water prior to final filling with the sample. Final filling was done by submerging the capped bottle to a depth of 10-15 cm, then removing the lid to allow water to completely fill the container. The lid was screwed in place prior to removing the bottle from the water. Samples were stored in the dark and kept refrigerated. Samples for analysis of dissolved metals were acidified with 1 ml nitric acid.

Error Detection and Data Qualifiers

pH, alkalinity, conductivity

Total inflection point alkalinity (TIP), pH and conductivity were measured at the Coop Unit laboratory in Sudbury. Split samples were analysed by the Ministry of Environment and Energy (MOEE) laboratories in Dorset and Toronto. Regression equations ($r^2 = 0.99$) developed in a QA/QC study conducted as part of the wintertime water sampling program were used to estimate Coop Unit values from the Dorset and Toronto results. These estimates provided a check on the quality of Coop Unit results.

If a Coop Unit alkalinity value disagreed by more than 100% with the regression estimates from both the Toronto and Dorset laboratories, the Coop Unit value was assumed to be in error and a regression-estimated value was substituted. This occurred for only three alkalinity measurements. More often, the estimates were used when alkalinity or conductivity analyses had not been done at the Coop Unit. The data derived from regression estimates are indicated (T = Toronto data used to estimate Coop Unit value; D = Dorset data used to estimate Coop Unit value). One Coop Unit pH measurement was inaccurate and replaced with a regression estimate.

Trace Metals

All metal analyses were done at the MOEE laboratory in Toronto. However, two different techniques were used, depending on when the samples were submitted. Some samples were analysed by ICP-AES. Most were analysed by the more sensitive ICP-MS.

Data qualifiers differed between the two techniques. For ICP-AES results, W and T values were given. The code <W indicates that no measurable response was observed under the test conditions (ie.not distinguishable from zero). The reported value indicates the minimum amount of analyte that could have been measured under routine conditions. W is usually less than the standard deviation of duplicates near zero. The <T code is used to represent a measurable amount of the analyte which under the test conditions was not verifiable. The MOEE laboratory recommends that results reported as <T should be considered tentative and used only for large batches of similar data to evaluate background levels or contaminant trends in the environment.

The ICP-MS results included uncertainty calculations based on performance data for that method and error of the individual sample. If the uncertainty limits included zero, the parameter was not detected within the precision of measurement (ie. it was not distinguishable from a concentration of zero) and this is indicated in the table by ND.

Ions, DOC, DIC, Colour, Nutrients, Hardness, Silicate

Data qualifiers for these parameters are W and T, as explained above for trace metals. T is five times W. An ion balance has not been calculated.

W and T values

Parameter	W	Ť
Total Aluminum	10 ug/L	J/gu 001
Barium	0.4 ug/L	5 ug/L
Beryllium	0.1 ug/L	l ug/L
Cadmium	0.t ug/L	0.5 ug/L
Chromium	0.2 ug/L	i ug/L
Cobalt	0.2 ug/L	1 ug/L
Соррег	0.2 ug/L	l ug/L
Iron	20 ug/L	100 ug/L
Lead	5 ug/L	25 ug/L
Manganese	0.5 ug/L.	2 ug/L
Molybdenum	0.2 ug/L	2 ug/L
Nickel	0.5 ug/L	5 ug/L
Strontium	2 ug/L	20 ug/L
Titanjun	l ug/L	10 ug/L
Variadium	0.2 ug/L	2 ug/L
Zanc	0.5 ug/L	5 ug/L
Chloride	0.2 mg/L	l mg/L
Sulphate	0.5 mg/L	2.5 mg/L
Calcium	0 05 ng/L	0.25 mg/L
Маджения	0 02 mg/L	0.10 mg/L
Sodium	0.02 mg/L	0.10 mg/L
Potascium	0 01 mg/L	0.03 mg/L
Herdness	0.2 mg/L as CaCO3	I mg/L as CaCO3
Colour, True	0.2 דרט	1 TCU
Conductivity	ł uS/cm	5 uS/cm
Nitrogen, Ammonia + ammonium	0 002 mg/L as N	0 01 mg/L as N
Nitrogen, Nitrate + rutrite	0.005 mg/L as N	0.025 mg/L as N
Nitrogen, Nitrite	0.001 mg/L as N	0.005 mg/L as N
Phosphorus, reative ortho-phosphate	0.0005 mg/L as P	0.0025 mg/L as P
Nitrogen, total Kjeldahl	0.02 mg/L as N	0.1 mg/L au N
Phosphorus, total	0.002 mg/L as P	0.01 mg/L as P
Dissolved morganic carbon	0.2 mg/L 24 C	1.0 mg/L as C
Dissolved organic carbon	0.1 mg/L 25 C	0.5 mg/L as C
Silicon, reactive silicates	0.02 mg/L as Si	0.10 mg/L as Sa

ICP-MS

Parameter	Range of individual sample uncertainties
Total Aluminum	± 10 - 48 ug/L
Barium	± 0.58 - 2.75 ug/L
Beryllium	± 1.00 ug/L
Cadmium	± 0.5 ug/L
Chromium	± 5.00 ug/L
Cobalt	±1.00 ug/L
Copper	± 5.00 ug/L
Iron	± 50 - 192.8 ug/L
Lead	± 0.50 - 3.99 ug/L
Manganese	± 1.00 - 18.48 ug/L
Molybdenum	<u>+</u> 1.00 ug/L
Nickel	± 1.00 - 1.21 ug/L
Strontium	±1.00 - 2.22 ug/L
Titanium	± 2.00 ug/L
Vanadium	± 1.00 ug/L
Zinc	± 2.00 - 2.40 ug/L

me W

Table 1. Geographic locations (geodetic datum NAD83), surface areas and watershed areas of sampled lakes. Watershed area includes lake surface area.

٠	umber	Lake name	Latitude (deg. mln, sec.)	Longitude (deg. mln, sec)	Surface area (ha)	Watershed gras (ha) exclusive in lake	Watershed area (ha) including upstream lakes	Upstream lakes by number
	1	Acid	46, 02, 01	81, 26, 38	19.6	145.0	463.8	13, 27, 78, 86
	2	Amikoguming	46, 05, 16	81, 17, 06	17.8	211.6	275 6	47, 102
	3	A.Y. Jackson	46, 01, 17	81, 23, 57	6.5	29.5	29.5	none
	4	Balsam	46, 09, 55	81, 14, 34	266.9	1, 193.0	3,360.7	26, 30, 31, 37, 44, 73, 74
	5	Beaver	46, 09, 24	81, 32, 31	16.2	263.4	263.4	none
	6	Bell	46, 08, 23	81, 11, 22	347.4	2,643.0	8,596.3	4, 19, 25, 26, 30, 31, 37, 44, 55, 73, 74, 104, 105, 106, 107, 108, 110
	7	Beity	46, 11, 31	81, 23, 04	19.1	169.5	169.5	none
	8	Billy	46, 07, 55	81, 09, 29	24.1	315.3	315.3	none
	9	Bizhiw	46, 03, 06	81, 29, 24	2.1	9.2	9.2	none
	10	Bodina	46, 06, 15	81, 29, 45	35.2	1119	111.9	none
	11	Boundary	46, 07, 35	81, 19, 04	93.3	873 9	873.9	none
	12	Bunnyrabbit	46, 05, 01	81, 16, 26	12.7	96.4	96.4	none
	13	Burke	46, 01, 43	81, 28, 28	8.4	107.6	107,6	none
	14	Canis	46, 04, 13	81, 32, 00	27.4	699.6	805.0	146
	15	Carlyle	46, 05, 03	81, 14, 45	156 7	515.9	1,058.6	12, 40, 90
	16	Carmichael	46, 07, 58	81, 33, 43	13 0	125.4	1465.0	67, 98, 133, 134, 135, 136
	17	Cat	46, 09, 37	81, 28, 04	46.4	262 6	262 6	none
	18	Cave	46, 02, 36	81, 27, 52	12.4	113.9	113.9	none
Ī	19	Chain	46. 08, 25	81, 12, 36	10.9	94.0	677.1	55, 104, 105, 106, 107
	20	Clearsilver	46, 07, 00	81, 15, 27	30.9	228.2	342.2	85, 109
7	21	Cranberry Bog	46, 01, 16	81, 22, 48	18.5	110.7	110.7	none
	22	Crater East	46, 02, 43	81, 31, 26	2 2	22.4	22.4	none
	23	Crater West	46, 02, 33	81, 31, 26	0.8	3.6	3.6	zone
	24	Cuckoo	46, 11, 07	81, 20, 17	24.6	123.1	123.1	none
	25	David	46, 09, 24	81, 17, 11	406.3	1,557.0	1,915.5	108, 110
4	26	Deacon	46, 10, 09	81, 13, 44	36 9	212.5	1,023.9	30, 73
	27	de Lamorandiere	46, 02, 00	81, 27, 14	5.9	35.9	318.8	13, 78, 86
	28	East Howry	46, 11, 22	81, 21, 31	71.7	318.2	441 3	24
	29	Fish	46, 09, 53	81, 23, 21	115.4	1,262 0	2,338.7	33, 39, 57
	30	Fox	46, 10, 35	81, 14, 01	42 3	336.3	8114	73

Table I (cont.). Geographic locations (geodetic datum NAD83), surface areas and watershed areas of sampled lakes. Watershed area includes lake surface area.

Number	Lake mme	Latitude (deg, min, sec)	Longitude (deg. min, sec)	Surface ares (he)	Watershed area (ha) exclusive to lake	Watershed area (ha) including upstream lakes	Optivens lakes by number
31	Frank	46, 11, 19	81, 17, 25	15.6	78.8	78.8	none
32	Freeland	46, 02, 09	81, 22, 01	47.7	377.4	4,582.6	2, 45, 47, 51, 52, 53, 59, 68, 70, 75, 80, 82, 84, 101, 102, 111, 112, 113, 114, 117, 120, 121, 122, 123, 124
33	Gail	46, 09, 05	81, 22, 36	20.9	103.3	103.3	none
34	Gem	46, 09, 30	81, 26, 15	30.7	413.4	4,320.3	24, 28, 29, 33, 36, 39, 42, 56, 57, 63, 64, 77,92, 93, 94, 99, 100, 131, 132
35	George	46, 01, 28	81, 24, 19	188 5	841.4	5,716.7	2, 3, 21, 32, 45, 47, 51, 52, 53, 58, 59, 68, 70, 75, 80, 82, 84, 101, 102, 111, 112, 113, 114, 117, 120, 121, 122, 123, 124, 140, 141, 142, 149
36	Goose	46, 10, 37	81, 25, 10	10.1	67.7	616.9	42, 77, 99, 100
37	Goschen	46, 10, 50	81, 15, 45	24.1	144.3	144.3	none
38	Grace	46, 07, 53	81, 36, 06	47.2	263	263 1	none
39	Great Mountain	46, 09, 19	81, 21, 27	198 3	8122	1,076.7	33, 57
40	Green	46, 04, 30	81, 16, 20	13.0	49.1	49.1	none
41	Grey	46, 07, 46	81, 10, 14	31.8	297.9	613.2	8
42	Grow	46, 10, 05	81, 27, 17	13	48.0	314.0	99, 100
43	Hanwood	46, 09, 39	81, 31, 35	320	144.1	614.6	5, 100
44	Harry	46, 10, 40	81, 18, 30	133 6	669.0	747.8	31
45	Heaven	46, 04, 42	81, 17, 38	1.7	14.1	14.1	none
46	Helen	46, 06, 25	81, 33, 45	82.6	883.4	883.5	none
47	Hemlock	46, 05, 00	81, 17, 06	3 3	20.2	64,0	102
48	Ноwту	46, 09, 10	81, 28, 27	18.1	642.8	5,376.5	24, 28, 29, 33, 34, 36, 39, 42, 56, 57, 63, 64, 77, 92, 93, 94, 99, 100, 131, 132
49	Ishmael	46, 06, 33	81, 35, 33	72.8	359.2	1242.6	46
50	Johnnie	46, 05, 03	81, 14, 45	342 3	1873.0	12952.5	4, 6, 8, 12, 15, 19, 20, 25, 26, 30, 31, 37, 40, 41, 54, 55, 60, 73, 74, 80, 85, 90, 97, 104, 105, 106, 107, 108, 109, 110
51	Kakakise	46, 03, 32	81, 19, 37	112 6	697.8	749.4	45, 52
52	Kidney	46, 03, 17	81, 20, 44	2.9	37.5	37.5	none

Table 1 (cont.). Geographic locations (geodetic datum NAD83), surface areas and watershed areas of sampled lakes. Watershed area includes lake surface area.

Number	Lake name	Latitude (deg, min, sec)	Longitude (deg, mln, sec)	Surface area (ha)	Watershed area (hn) exclusive to lake	Watershed area (ha) including upstream lakes	Opstream lakes by number
53	Killamey	46, 03, 48	81, 21, 14	326.5	1,761.0	3,227.5	2, 47, 59, 68, 70, 75, 81 84, 102, 111, 112, 113, 114, 117, 120, 121, 122 123, 124
54	Lake of the Woods	46, 06, 09	81, 12, 10	9.7	67.0	67.0	none
55	Little Bell	46, 08, 42	81, 13, 25	21.1	234.5	583.1	104, 105, 106, 107
56	Little Mink	46, 05, 16	81, 23, 10	18.7	\$1.0	51.0	none
57	Little Mountain	46, 08, 33	81, 21, 45	23.6	161.2	161.2	none
58	Little Sheguiandah	46, 01, 28	81, 23, 31	4.5	21.5	21.5	pone
59	Little Superior	46, 04, 14	81, 19, 59	13.9	35.4	35.4	pone
60	Log Boom	46, 07, 07	81, 14, 14	69	520	8,648.3	4, 6, 19, 25, 26, 30, 31, 37, 44, 55, 73, 74, 104, 105, 106, 107, 108, 110
61	Low	46, 06, 06	81, 33, 38	33.8	117.0	1000.4	46
62	Lumsden	46, 01, 23	81, 25, 59	23.8	298.8	707.9	1, 13, 27, 86, 144
63	Mink	46, 10, 45	81, 22, 40	30.5	260.6	701.9	24, 28
64	Moose	46, 08, 44	81, 25, 23	166	157.2	157.2	none
65	Muriel	46, 03, 04	81, 26, 11	31.7	354.9	1,278 8	69, 89, 143
66	Миггау	46, 08, 44	81, 33, 36	93.0	945.4	7,786.9	16, 24, 28, 29, 33, 34, 36, 39, 42, 48, 56, 57, 63, 64, 67, 77, 92, 93, 94, 98, 99, 100, 131, 132, 133, 134, 135, 136
67	Nellie	46, 07, 54	81, 31, 20	247 5	1055.0	1339.6	98, 133, 134, 135, 136
68	Norway	46, 05, 04	81, 18, 36	63.3	377 .0	1,046.4	2, 47, 70, 81, 102
69	O.S.A.	46, 03, 07	81, 24, 18	278.9	866.2	879.0	89
70	Partridge	46, 04, 58	81, 18, 12	11.0	46.9	46 9	none
71	Patten	46, 06, 36	81, 21, 37	11.9	280 5	411.7	115, 116, 126, 127
72	Pearl	46, 03, 13	81, 28, 04	26	19.2	19.2	none
73	Peter	46, 11, 07	81, 12, 50	132.4	475.1	475.1	none
74	Pike	46, 10. 23	81, 15, 41	32 0	251.7	1,143.8	31, 37, 44
75	Proulx	46, 04, 26	81, 19, 36	120	42.0	42 0	none
76	Quartzite	46, 05, 31	81, 21, 19	15 7	59.1	98.3	118
77	Rocky	46, 10. 19	81, 26, 26	42.9	235.2	549.2	42, 99, 100
78	Roque	46, 01, 35	81, 28, 01	2.8	69.9	69.9	none

Table 1 (cont.). Geographic locations (geodetic datum NAD83), surface areas and watershed areas of sampled lakes. Watershed area includes lake surface area.

Number	Lake name	Latitude (deg, min, sec)	Longitude (deg, min, ser)	Surface area (ks)	Watershed area (ha) exclusive to lake	Watershed area (ha) including upstream lalos	Upstream lakes by number
79	Round Otter	46, 10, 15	81, 24, 26	20.4	670.4	2,494.8	24, 28, 36, 42, 56, 63, 77, 92, 93, 94, 99, 100, 131, 132
80	RuthRoy	46, 05, 20	81, 14, 58	54.5	496.8	496.8	none
81	Sandy	46, 05, 34	81, 17, 31	21.6	346.9	622.5	2, 47, 102
82	Scaley's	46, 03, 03	81, 24, 24	9.4	51.0	51.0	pone
83	Shigaug	46,08,39	81,23,23	7.7	22.0	22.0	none
84	Shingwak	46, 04, 28	81, 19, 06	5.3	24.9	24.9	none
8.5	Silver	46, 06, 40	81, 15, 59	6.2	101.1	1140	109
86	Solomon	46, 01, 48	81, 27, 31	8.3	105.4	282 9	13, 78
87	Spark	46, 02, 55	81, 30, 15	12.3	419	44.9	none
88	Sugarbush	46, 00, 53	81, 29, 20	5.1	92 0	92.0	none
89	Tearthop	46, 02, 33	81, 24, 48	3.4	128	12.8	none
90	Тепу	46, 03, 56	81, 17, 19	11.5	397 2	542.8	12, 40
91	The Three Lakes	46, 00, 56	81, 30, 56	19.7	137 6	137.6	none
92	The Tri Lakes (North)	46, 11, 31	81, 24, 36	12.8	50	50	none
93	The Tri Lakes (Southeast)	46, 11, 02	81, 24, 19	17.5	148.4	3129	94, 96
94	The Tri Lakes (Southwest)	46, 11, 08	81, 24, 32	10.4	1145	1145	none
95	Тімеельнома	46, 05, 28	81, 27, 02	810.1	7,426.0	10,319.8	11, 71, 76, 83, 103, 115, 116, 118, 125, 126, 127, 128, 129, 130, 137, 138, 139, 150, 151
96	Topaz	46, 03, 11	81, 28, 43	4.7	24.4	24,4	none
97	Turbid	46, 06, 49	81, 11, 23	20 7	523.2	1,136 4	8, 41
98	Turtleback	46, 08, 24	81, 29, 12	54	57.7	57.7	none
99	Van	46, 10, 03	81, 28, 04	147	58 9	266 0	100
100	Van Winkle	46, 10, 00	81, 30, 36	85.2	207.1	207.1	none
101	Wagon Road	46, 01, 43	81, 22, 51	5.2	27.4	27.4	none
102	Whiskeyjack	46, 04, 57	81, 17, 29	128	43.8	43 8	none
103	York	46, 06, 58	81, 23, 50	39.1	399.3	399 3	none
104	#3	46, 08, 17	81, 13, 57	11.9	102 9	348.6	105, 106, 107

Table 1 (cont.). Geographic locations (geodetic datum NAD83), surface areas and watershed areas of sampled lakes. Watershed area includes lake surface area.

Number	Lake name	Letlinde (deg, min, sec)	Laugitude (deg. min, sec)	Surface area (tu)	Watershed area (ha) exclusive to lake	Watershed area (ha) including upstream lakes	Upstream lakes by namiber
105	fl-1	46, 08, 05	81, 13, 52	6.6	64.1	64.1	none
106	#5	46, 08, 16	81, 14, 34	3.5	112.2	181.6	107
107	#6	46, 08, 20	81, 15, 22	2.4	69.4	69.4	none
108	N7	46, 08, 39	81, 15, 11	2.8	50.7	50.7	none
109	#9	46, 06, 26	81, 16, 05	1.3	12.9	12.9	none
110	#12	46, 09, 01	81, 18, 16	38.1	307.8	307.8	none
111	#17	46, 06, 14	81, 19, 02	2.9	29.5	29.5	none
112	#18	46, 05, 58	81, 19, 02	1.5	26.7	56.2	111
113	#19	46, 05, 58	81, 19, 35	8.6	100.3	107.7	114
114	#20	46, 06, 08	81, 19, 58	0.9	7.4	7.4	none
115	#21	46, 06, 03	81, 20, 20	1.1	11.8	33.7	116
116	W22	46, 05, 55	81, 20, 07	2.8	21.9	21.9	none
117	#23	46, 05, 43	81, 20, 07	1.9	30. 7	30. 7	рове
118	#24	46, 05, 36	81, 20, 50	3	39.2	39.2	none
119	#25	46, 05, 27	81, 20, 50	1.2	9.6	9.6	none
120	#26	46, 05, 12	81, 20, 33	1.6	36.5	46.1	119
121	#27	46, 05, 03	81, 21, 31	3.1	36 4	36.4	none
122	#28	46, 04, 52	81, 21, 37	2.5	19.0	19.0	none
123	#29	46, 04, 44	81, 21, 31	2.4	7.7	7.7	none
124	#30	46, 04, 52	81, 21, 12	2.5	23.6	60.0	121
125	#33	46, 05, 18	81, 23, 09	9.3	114.9	114.9	none
126	#35	46, 06, 32	81, 20, 41	5.5	78.0	78.0	none
127	#36	46, 06, 59	81, 21, 07	30	19. 5	19 5	none
128	#37A	46, 06, 50	81, 21, 56	17.6	96.3	96,3	none
129	#38	46, 07, 06	81, 19, 57	1.5	263.4	263.4	none
130	#40	46, 08, 31	81, 20, 35	3.3	22.2	22.2	none
131	N45	46, 10, 36	81, 19, 30	4.4	90,0	90.0	none
132	#46	46, 10, 50	81, 20, 54	2.5	51.7	51.7	none
133	#50	46, 08, 44	81, 27, 14	1.8	28.3	28.3	попе
134	#51	46, 08, 30	81, 27, 33	9.7	138.5	226.9	133, 135, 136

Table 1 (cont.). Geographic locations (geodetic datum NAD83), surface areas and watershed areas of sampled lakes. Watershed area includes lake surface area.

Number	Lake name	Latitude (deg; min, sec)	Longitude (dag, min, see)	Surface area (ha)	Watershed area (ha) exclusive to lake	Watershed area (ha) including upstream lakes	Upstrettt laker by sumber
135	W52	46, 08, 20	81, 27, 43	4.1	33.8	60.1	136
136	W53	46, 08, 13	81, 27, 24	2.8	26.3	26.3	none
137	#54	46, 08, 28	81, 26, 32	7.1	34.9	34.9	none
138	#55	46, 08, 08	81, 26, 34	6.7	68.2	103.1	137
139	#59	46, 04, 38	81, 28, 15	48.4	251.2	251.2	none
140	#64	46, 02, 08	81, 24, 49	3.6	97.2	131.3	141, 142, 149
14!	W65	46, 01, 57	81, 24, 52	2.6	11.7	24.0	142
142	W66	46, 01, 49	81, 24, 46	20	123	123	none
143	#68	46, 02, 32	81, 26, 43	3 8	44.9	449	none
144	#69	46, 01, 51	81, 26, 34	2.2	15.2	479.0	1, 13, 27, 78, 86
145	#71	46, 02, 10	81, 28, 28	3.6	96.9	96.9	none
146	#73	46, 05, 09	81, 30, 53	6	105.4	105.4	none
147	W74	46, 06, 34	81, 30, 46	118	257.9	257.9	none
148	#76	46, 05, 53	81, 34, 46	8.7	124.8	124.8	none
149	N79	46, 02, 26	81, 25, 59	0.7	10 (10.1	none
150	#8 0	46, 00, 56	81, 22, 21	5.1	136.7	235.0	76, 118
151	· #82	46, 08, 18	81, 23, 57	3.4	100.8	100.8	none

Table 2. If Coop Unit values not available for conductivity, pH or alkalinity, regression equations were used to estimate Coop Unit values from Toronto (T) or Dorset (D) results.

Number	Lake name	Sampling Date	pH	TIP alkalinity	Conductivity (uS/cm)	True Colour (TCU)	DOC (mg/L)	DIC (mg/L)
,	Acid	Jan. 30	4.995	-0.27	23.6	7	1.6	0.2<=W
2	Amikogaming	Jan. 23	5.119	0.20 (D)	30.3	5.6	2.5	0.2<=\V
3	A.Y. Jackson	Feb. 1	5.815	1.23	26	6.8	2.7	0.4 <t< th=""></t<>
막	Balsam	Jan. 23	6.091	4.03 (D)	33.2	30.4	9	-
5	Bewer	Feb. 2	5.976	5.435	28.7	64	80	1.2
9	Bell	Jan. 23	5.925	1.63	29.2	21	4.9	0.4 <t< th=""></t<>
7	Bethy	Aug 27	7.035	14.35(T)	\$5.5 (T)	31.8	8.5	3
80	Billy	Aug. 27	4.678	-0 28 (D)	26.6 (T)	20	\$	0.2<=W
6	Bizhiw	Feb. I	4.518	-1.4	30.2	\$	8.0	0.2<=W
10	Bodina	Feb. 2	6 585	11.39	\$1	50.4	10.5	2.4
11	Boundary:	Feb. 2	5.207	0.1	23.4	7.6	2.3	0.2<=\V
12	Bunnyrabbit	Jan 23	4.767	(Q) 19 O	27.1	1.6	0.8	0.2<∺W
13	Burke	Feb. 2	5.094	-0.17	25.4	9.4	1.8	0.2<=W
14	Canis	Feb 2	6 387	21.89	76.2	111	16.5	9
15	Carlyle	Feb. 1	5.85	1.147	27.7	14.6	3.7	0.2<=W
16	Carmichael	Feb. 2	4.625	4.1	39	8.8	0.3 <t< th=""><th>0.2<aw< th=""></aw<></th></t<>	0.2 <aw< th=""></aw<>
17	C _P	Feb. 2	6 383	6.558	37	13.6	4.1	9'1
18	Cave	Feb. 1	5.602	1.828	30.5	13	4.2	0.8 <t< th=""></t<>
61	Chain	Jan 23 Jan 30	4.599	-0.81(D) -1.1	30.4	40.4	5.7 6.5	0.4 <t 2.2</t

Table 2 (cont.) If Coop Unit values not available for conductivity, pH or alkalinity, regression equations were used to estimate Coop Unit values from Toronto (T) or Dorset (D) results.

Number	Lake name	Sampling Date	ЪН	TIP alkalinity	Conductivity (uS/cm)	True Colour (TCU)	DOC (mg/L)	DIC (mg/L)
20	Clearsthor	Jan 23	4.932	-0.32(D)	23.8	4,4	1.8	0.2<=W
21	Cranberry Bog	Feb 1	6.147	9.511	33.5	56.4	7.7	3.2
22	Crater East	Feb. 2	5.852	3.419	363	17.4	3.0	1.2
23	Crater 1Vest	Feb. 9	5.421	1.624	17.4	34.8	6.2	0.8 <t< th=""></t<>
8.5	Cuckoo	Aug 27	6.647	(L) 0+1°	27.6 (T)	9.0	4.2	0.6 <t< th=""></t<>
25	David	F∉b. 2	5.000	61.0-	25.1	4.2	1.6	0.2<=VV
26	Deacon	Jan 23	5914	2 % (D)	363	32.4	6.3	0.6 <t< th=""></t<>
27	de Lamorandiere	Feb. 2 Feb 9	4,974	0 04 (D) -0.06	27.3 20.5	17.8	2.9	0.2<-W 0.2<=W
32	East Howty	75 guk	7.129	11.43 (T)	45.5 (T)	14.4	5.7	2.2
52	Fish	Jan 24 Feb 12	0+6'S	0.70 (T) 1 904	25.3	11.6	3.8	0.4< <u>r</u> 0.4 <t< th=""></t<>
30	Fox	Jan 23	6 210	3 81 (D)	38.2	33.0	6.3	0.8 <t< th=""></t<>
31	Frank	Jan 23	6.248	6.26 (D)	35.0	32.4	6.6	1.4
32	Freeland	Feb. 2	5.520	0 5819	29.8	9.9	1.1	0.2<=W
33	Gail	Jan 24 Feb. 12	4.633	K'N 1.1-	28.3 28.0	2.2 0.4 < T	0.6	0.2<=W 0.2<=W
34	Gem	Feb. 2	6.104	3.860	33.7	22.0	4. ∶	1.0
35	George	Jan. 30	5.787	600 1	28.7	6.2	1.7	0.8 <t< th=""></t<>
36	Goose	Jan. 24	6.209	7.28 (D)	37.9	40.0	6.5	2.6
37	Goschen	Aug 27	6 234	3 82 (T)	31.6 (T)	37.6	8.0	0.4 <t< th=""></t<>

Table 2 (cont.). If Coop Unit values not available for conductivity, pH or alkalinity, regression equations were used to estimate Coop Unit values from Toronto (T) or Dorset (D) results.

(1) TTP albalisting Conductativing (solicitum) True Coloru (TOU) True Coloru (TOU) DIC (modit) DIC (modit) <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>								
0.27(D) 26.1 5.8 1.5 0.1800 26.0 5.4 2.2 0.1800 26.0 5.4 2.2 0.1800 36.0 8.1 2.2 0.01800 31.4 56.0 8.1 0.08(T) 276(T) 9.2 3.4 1.39(D) 36.7 12.4 4.1 1.490 33.7 12.4 4.1 1.365 23.8 18.2 5.1 3.626 22.3 15.0 4.0 4.508 32.5 15.0 3.7 4.508 32.5 15.0 3.7 5.010 33.7 10.4 3.5 5.010 33.7 10.4 3.5 5.010 33.7 10.4 3.5 5.010 33.7 10.4 3.5 5.6 12.8 3.4 4.5 5.00 2.5 4.0 1.2 6.6442 2.6 12.8 3.5	Lake name Sampling Date pH	Hd	101	TTP alkalinity	Conductivity (uS/cm)	True Colour (TCU)	DOC (mg/L)	DIC (mg/L)
261 80 22 260 54 20 260 81 20 376(T) 92 3.4 367 124 4.1 337 23.4 48 238 182 5.1 293 180 40 325 150 3.7 325 150 3.7 337 10,4 3.5 304 80 2.7 256 128 3.3 256(T) 7.8 7.4 317 586 7.4	Grace Feb. 2 5.110	5,110		-0.14	25.7	5.8	1.5	0.2<=W
1.39 (D) 31.4 \$6.0° 8.1	Great Mountain. Jan. 24 5,351 Feb. 12 5,383	5,351		0.27(D) 0.1880	26.1 26.0	8.0 5.4	2.2	0.2<=W 0.2<=W
-0.09(T) 276(T) 92 34 847(D) 36.7 124 4.1 7,490 33.7 23.4 4.8 393(D) 238 187 5.1 3,626 29.3 18.7 4.0 -0.58(D) 22.5 38.0 40 4,508 32.5 15.0 40 -0.61(D) 37.8 2.6 1.2 5010 37.9 17.8 4.5 5010 33.7 10.4 3.5 500 33.7 10.4 3.5 504 80 2.7 2.0 504 80 2.7 2.0 504 35.6 4.0 1.0 508(T) 25.6 4.0 1.0 508(T) 33.7 33.3 33.3 500 59.5 4.0 1.0 500 25.6 4.0 1.0 55.6 31.7 35.6 7.4 1.1	Green Jan. 23 5 329	5 329		(G) 6E-1	31.4	56.0	8.1	0.6 <t< td=""></t<>
847(D) 367 124 41 7,490 33.7 23.4 48 1,93(D) 28.8 18.7 51 3,626 29.3 18.7 51 4,58(D) 22.5 38.0 40 -0.61(D) 37.8 26 1.2 5010 37.8 17.8 4.5 5010 33.7 11.0 3.4 5010 33.7 11.0 3.4 5010 33.7 11.0 3.4 5010 36.7 11.0 3.4 5010 35.7 4.0 1.0 5010 35.7 4.0 1.0 5010 35.6 3.5 4.0 1.0 5010 35.6 3.5 3.5 1.0 5010 35.6 3.5 3.5 1.0 5010 35.0 35.6 3.5 3.5 5010 35.6 35.6 3.3 3.3 5010 35.6 35.6 3.1 3.3 5010 35.6 <td< td=""><td>Grey: Aug. 27 4 904</td><td> 4 90</td><td></td><td>-0.09 (T)</td><td>276(T)</td><td>9.2</td><td>3.4</td><td>0.2<=W</td></td<>	Grey: Aug. 27 4 904	 4 90		-0.09 (T)	276(T)	9.2	3.4	0.2<=W
393 (D) 28.8 18.2 5.1 3.626 29.3 18.2 5.1 4.58 (D) 22.5 38.0 40 4.508 32.5 15.0 40 4.508 32.5 15.0 3.7 4.294 32.9 17.8 4.5 5.010 33.7 10.4 3.5 5.010 33.7 11.0 3.4 5.042 26.7 11.0 3.4 0.0442 26.7 11.0 3.4 0.0442 26.7 12.8 3.5 0.0472 25.6 12.8 3.5 0.097 25.5 4.0 1.0 -0.09 25.5 4.0 1.0 -1.1 31.7 55.6 7.1 -1.1 31.7 55.6 7.1	Grow Jan. 24 6.571	 6.57	_	8.47(D)	36.7	12.4	4.1	2.8
393(D) 288 182 51 3,626 293 150 51 4,508 225 38.0° 40 4,508 32.5 15.0° 37 -061(D) 37.8 26 1.2 5010 37.8 17.8 4.5 5010 33.7 10.4 3.5 06442 26.7 11.0° 3.4 2668 30.4 80 2.7 09472 29.6 11.2 g 3.5 -0.09 29.2 4.0 1.0 -0.09 32.6 (T) 7.8 7.4 -1.1 31.7 55.6 7.1	Hartwood Feb. 2 6 378	63	78	7.490	33.7	23.4	45 80.	1.6
-0.58 (D) 22.5 38.0 40 4.508 32.5 15.0 3.7 -0.61 (D) 37.8 2.6 1.2 4.294 32.9 17.8 4.5 5.010 33.7 10.4 3.5 0.6442 25.7 11.0 3.4 2.668 30.4 8.0 2.7 0.9472 29.6 12.8 35 -0.09 25.2 4.0 1.0 -1.21 (D) 32.0 58.6 7.4 -1.1 31.7 55.6 7.1	Harry Jan 23 6 345 Feb 13 6 197	634	\$1 71	3 93 (D) 3.626	28.8 29.3	18.2	5.1 5.1	0.8 <t 0.6<t< td=""></t<></t
4,508 32.5 15.0 3.7 -061 (D) 37.8 2.6 1.2 4,294 32.9 17.8 4.5 5 010 33.7 10.4 3.5 0.6442 26.7 11.0 3.4 2.668 30.4 8.0 2.7 0.9472 29.6 12.8 3.5 -0.09 29.2 4.0 1.0 -0.08 (T) 25.6 (T) 7.8 3.3 -1.1 (D) 32.0 58.6 7.4 -1.1 31.7 55.6 7.1	Heaven Jan 23 4.767	4.76	7	-0.58 (D)	22.5	38.0	4.0	0.2<=\V
-061(D) 37.8 2.6 1.2 4.294 32.9 17.8 4.5 5.010 33.7 10.4 3.5 0.6442 2.6.7 11.0 3.4 2.668 30.4 8.0 2.7 0.9472 29.6 12.2 3.5 -0.09 29.2 4.0 1.0 -1.21(D) 32.0 58.6 7.4 -1.1 31.7 55.6 7.1 -1.1 31.7 55.6 7.1	Helen Jan 30 6 292	6 29.	2	4,508	32.5	15.0	3.7	1.4
4,294 32.9 17.8 4.5 5,010 33.7 10.4 3.5 0,6442 25.7 11.0 3.4 2,668 30.4 8.0 2.7 0,9472 29.6 12.8 3.5 -0,09 25.2 4.0 1.0 -0,08(T) 25.6(T) 7.8 3.3 -1,21(D) 32.0 58.6 7.4 -1,1 33.7 55.6 7.1	Hemlock Jan 23 4,737	4.73	,	-0 61 (D)	37.8	2.6	1.2	0.2<-W
5.010 33.7 10.4 3.5 0.6442 26.7 11.0 3.4 2.668 30.4 80 2.7 0.9472 29.6 12.8 3.5 -0.09 29.2 4.0 1.0 -0.08 (T) 25.6 (T) 7.8 3.3 -1.21 (D) 32.0 58.8 (**) 7.4 -1.1 31.7 55.6 (**) 7.1	Houry Feb. 2 6314	631		4,294	32.9	17.8	4.5	1.0
0.6442 26.7 11.0 3.4 2.668 30.4 80 2.7 0.9472 29.6 12.8 3.5 -0.09 29.2 4.0 1.0 -0.08 (T) 25.6 (T) 7.8 3.3 -1.21 (D) 32.0 58.6 7.4 -1.1 31.7 55.6 7.1	Ishmael Jan 30 6 508	05.9	8	5.010	33.7	10.4	3.5	1.2
2.668 304 80 2.7 0.9472 29.6 12.8 3.5 -0.09 59.2 4.0 1.0 -0.08 (T) 25.6 (T) 7.8 3.3 -1.21 (D) 32.0 58.6 7.4 -1.1 31.7 55.6 7.1	Johnnie Jan. 23 5 598	\$ 58	8	0.6442	26.7	11.0	3.4	0.2<=\V
0.9472 29.6 12.8 3.5 3.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.2 1.0 1.0 1.0 1.0 1.1 1.2 1.0 1.1 1.1 1.0 1.1 1.1 1.1 1.1 1.1 1.1	Kakakise Jan. 30 6.286	 6.2	98	2.668	30.4	8.0	2.7	1.0
-0.09	Kidney Feb. 1 5.323	5.32	3	0.9472	29.6	12.8	3.5	0.8 <t< td=""></t<>
-0.08 (T) 25.6 (T) 7.8 3.3 -1.21 (D) 32.0 58.¢ 7.4 -1.1 55.¢ 7.1	Killamey Jan. 30 5.075	5.07	~	-0.09	39.2	4.0	1.0	0.2<=W
-1.21(D) 32.0 58.¢ 7.4 -1.1 31.7 55.¢ 7.1	Lake of the Woods Aug. 27 4885	7.88	s,	-0.08 (T)	25.6 (T)	7.8	3.3	0.2<=tV
	Little Bell Jan 23 4 578	55.4 58.4	22 E)	-1.21 (D) -1.1	32.0 31.7	58.¢ 55.¢	7.4 7.1	0.6 <t 0.2<=W</t

If Coop Unit values not available for conductivity, pH or alkalinity, regression equations were used to estimate Coop Unit values from Toronto (T) or Dorset (D) results. Table 2 (cont.).

56 Little Mink 57 Little Mourhain 58 Little Sheguiandah 59 Little Superior 60 Log Boom 61 Low 62 Lumaden 63 Lumaden 64 Mink	iink untain uiandah							
	untain	Jan 24	6.685	12.28 (D)	43.4	9.8	3.6	3.4
	hepunin	Jan 24	5,065	(D) #0.0°	28.4	2.8	0.8	0 2<=\V
		Feb. 1	6.122	5.297	35.0	14.8	4.7	2.0
	xerior	Jan. 23	4.320	.2.52 (D)	49.1	0.1	0.2 <t< th=""><th>0.2<-W</th></t<>	0.2<-W
	8	Jan 23	5 482	(D) 22.1	25.1	11.4	4.6	0.6 <t< td=""></t<>
	_	Jan 30	7.239	20.93	73.9	7.4	3.0	5.2
	<u> </u>	Jan. 30	5.185	-0.01	21.9	6.4	1.5	0.2<=\V
	<u></u>	Jan 24	6.298	11.17(D)	8.84	39.2	7.4	3.0
	2	Feb. 2	5.135	90:0-	26.0	0.2<=\V	1.5	0.2<∹W
65 Nfuriel	72	Feb. 1	\$146	-0.16	32.3	5.6	1.2	0 2<=W
66 Muray	, sign	Feb. 2	6.205	4.007	32.2	23.8	4.3	0.8<⊤
67 Nellie	. <u>u</u>	Feb 2	4.580	-1.2	40.0	3.0	0.2 <t< td=""><td>0.2<=W</td></t<>	0.2<=W
Norway	¥	Jan. 23	5.136	0.15(D)	29.2	3.8	1.7	0.2<=\text{iV}
69 O.S.A.	4	Jan. 30 Feb. 13	4.808	-0.73 -0.76	35.3	3.0 0.2<=W	0.3 <t 0.4<t< td=""><td>0.2<=W 0.2<=W</td></t<></t 	0.2<=W 0.2<=W
70 Partridge	1ge	Jan. 23	5.683	0.69 (D)	30.2	2.4	BO:	0.2<=\text{\alpha}
71 Panen	Ę.	Feb 2	5.053	0.2534	31.3	14.4	3.5	0.4 <t< td=""></t<>
72 Pearl	=	Feb. 1	5.311	03353	31.6	4.4	1.1	0.4 <t< td=""></t<>
73 Peter	ה	Feb. 12	6.504	4.368	41.3	7.2	3.3	0.6 <t< td=""></t<>
74 Pike	J	Jan 23	5.593	5.34 (D)	32.6	49.0	7.6	1.6
75 Proulx	×	Jun 23	4.199	-1.21 (D)	43.8	0.4	0.3<⊤	0.2

Table 2 (cont.) If Coop Unit values not available for conductivity, pH or alkalinity, regression equations were used to estimate Coop Unit values from Toronto (T) or Dorset (D) results.

Number	Lake name	Sampling Date	PH	TTP atkalinity	Conductivity (uS/cm)	True Colour (TCU)	DOC (mg/L)	DIC (mg/L)
76	Quartzite	Feb. 2 Aug. 27	4.804	-0.66 -0.47 (T)	28.9 23.6 (T)	5.0 0.2<=W	0.1<=W 0.2 <t< th=""><th>0.2<=W 0.2<=W</th></t<>	0.2<=W 0.2<=W
11	Rocky	Jan. 24	6.587	9.39 (D)	38.1	17.2	4.9	3.0
87.	Roque	Feb. 2	\$.00.\$	-0.01	28.6	16.0	3.4	0.2<=W
٤	Round Otter	Jan. 24	6199	8.05 (T)	42.9	51.6	7.6	2.8
08	Ruth-Roy	Jan. 23	4.853	-0.59	28.3	80	0.5	0.2<=W
18	Sandy	Jan 23	5.147	-0 25 (D)	289	6.6	2.0	0.2<*W
82	Sealcy's	Feb 1	6.064	9.427	38.7	Л.2	10.7	3.6
83	Shigang	Feb.2	4.830	-0.60	25.4	80.	6.0	0.2<=\V
200	Shingwak	Jan 23	4.714	-0.61 (D)	31.6	1.2	0.3<⊤	0.2<=W
\$8	Silver	Jan 23	4.976	-0.02 (D)	26.2	80; 80;	2.3	0.4 <t< td=""></t<>
98	Solomon	Feb. 2	5.556	1.55 (D)	29.7	45.4	3.8	0.8<⊤
87	Spark	Feb. 2	4,463	1.7	36.7	7.4	0.5	0.2<=W
90	Sugarbush	Feb. 2	4.770	-0.61	32.4	9.2	2.2	0.2<=W
68	Teardrop	Feb.1 Feb.9	6.500	2 638 2.748	26.6	4.6 0.2<=W	1.0	0.6 <t 0.4<t< th=""></t<></t
8	Тепу	Jan. 30	5.371	0 8031	7.72	33.8	5.5	1.4
16	The Three Lakes	Feb 2 Feb. 9	5.052 5.079	0.2584	23.2	29.6	9. A.	0.4 <t 0.4<t< th=""></t<></t
ъ	The Tri Lakes (North)	Aug. 27	6.664	8.11(T)	37.5 (T)	24.2	7.3	1.6
66	The Tri Lakes (Southeast)	Aug 27	6.513	(T) 16.7	37.5 (1)	31.6	7.0	1.6
ま	The Tri Lakes (Southwest)	Aug. 27	6.3 (T.)	4.01 (T)	25.6(T)	27.2	8.3	0.4 <t< th=""></t<>
56	Тиссинтомз	Jan. 30	5.847	1.156	293	9.8	3.2	0.2<=W
8	Topaz	Feb. I	4.608	-1:1	35.7	3.8	0.3 <t< td=""><td>0.2<=W</td></t<>	0.2<=W

Table 2 (cont.). If Coop Unit values not available for conductivity, pH or alkalinity, regression equations were used to estimate Coop Unit values from Toronto (T) or Dorset (D) results.

Turbled Aug 27 4960 011 (T) 246 (T) Van Feb 2 6 163 6.640 326 Van Vinke Feb 2 6 163 6.640 326 Van Winke Feb 2 6 562 4 284 305 Wagon Road Jan 30 5 995 7 841 32.7 Whiskeyjeck Jan 23 4 610 -1.11 (D) 38.7 Vork Feb 12 6 081 3.666 36.6 vork Feb 12 4 564 -1.12 33.0 vork Feb 12 4 564 -1.12 33.0 vork Feb 12 4 564 -1.2 33.0 vork Feb 12 4 564 -1.2 33.0 vork Feb 12 4 564 -1.2 27.2 vork Feb 12 4 563 -0.0 19.5 vork Feb 12 4 593 -0.17 22.9 vork Feb 12 4 593 -0.17 22.9 vork<	Number	Lake name	Sumpling Date	Æ	TIP alkalinity	Conductivity (uS/cm)	True Colour (TCU)	DOC (mg/L)	DIC (mg/L)
Van Van Vinite Act Feb 2 6163 6.640 287 Van Winkle Feb 2 6.562 4.284 326 Wagon Road Jan 30 5.952 4.284 30.5 Whiskeyjack Jan 30 5.995 7.341 32.7 York Feb 2 6.081 3.666 36.6 s 3 Feb 12 4.564 -1.1 33.0 s 4 Feb 12 4.564 -1.2 33.0 s 5 Feb 12 4.363 -2.0 30.6 s 6 Feb 12 4.543 -1.2 37.0 s 6 Feb 12 4.543 -1.2 37.0 s 6 Feb 12 4.543 -1.2 27.2 s 6 Feb 12 4.543 -1.2 27.2 s 7 Feb 12 4.543 -1.2 27.0 s 7 Feb 12 4.543 -1.2 27.0 s 1 Feb 12 4.545 -0.7 22.9 s 1	97	Turbid	Aug. 27	4.960	0.11 <i>(</i> T)	24.6 (T)	9.8	3.2	0.2<=tV
Van Feb 2 6163 6.640 326 Walken Road Feb 2 6.562 4.284 30.5 Whiskeyjack Jan 30 5.995 7.841 32.7 Whiskeyjack Jan 23 4.610 .1.11 (D) 38.7 York Feb 2 6.081 3.696 36.6 #3 Feb 12 4.544 .1.2 33.0 #4 Feb 12 4.544 .1.2 33.0 #5 Feb 12 4.543 .1.2 33.0 #5 Feb 12 4.543 .1.2 33.0 #5 Feb 12 4.543 .1.2 27.2 #6 Feb 12 4.543 .1.2 27.2 #8 Feb 12 4.543 .0.06 (D) 28.0 #8 Feb 12 4.543 .0.17 22.9 #8 Feb 12 4.520 .0.17 22.9 #8 Feb 12 4.520 .0.17 22.9 #8 Feb 12	86	Turtleback	Feb. 2	\$ 077	20:0-	28.7	1.4	2.1	0.2<=\V
Van Winkle Feb. 2 6.562 4.284 30.5 Wagon Road Jan 30 5.995 7.841 32.7 Whiskeyjack Jan 23 4610 1.11 (D) 38.7 York Feb. 12 4.564 1.12 3.66 york Feb. 12 4.564 -1.2 33.0 sad Feb. 12 4.543 -0.58 37.0 sab Feb. 12 4.534 -1.2 30.6 sab Feb. 12 4.534 -1.2 27.2 sab Feb. 12 4.534 -1.2 27.2 sab Feb. 12 4.935 0.06 (D) 28.0 sal Feb. 12 4.900 -0.17 22.9 sal Feb 9 4.620 -0.75 30.6 sal Feb 9 4.818 -0.75 28.9	8	Van	Feb. 2	6163	6.640	32.6	16.0	4.4	1.6
Wagon Road Jen 30 5995 7341 32.7 Whiskeyjack Jan 23 4610 -1.11(D) 38.7 York Feb 12 6.081 3.696 36.6 A3 Feb 12 4.564 -1.2 33.0 B4 Feb 12 4.728 -0.58 37.0 B6 Feb 12 4.524 -1.2 30.6 B6 Feb 12 4.524 -1.2 27.2 B7 Feb 12 4.524 -1.2 27.2 B9 Feb 12 4.524 -1.2 27.2 B1 Feb 12 4.524 -1.2 27.2 B1 Feb 12 4.524 -1.2 27.0 B1 Feb 12 4.524 -1.2 22.9 B1 Feb 12 4.524 -0.75 30.6 B1 Feb 12 4.524 -0.75 30.6 B1 Feb 9 4.620 -0.75 30.6 B1 Feb 9 4.620	100	Van Winkle	Feb. 2	6.562	4.284	30.5	5.6	3.0	0.8<⊤
Vork Feb 12 6.081 3.696 36.6 x/3 Feb 12 6.081 3.696 36.6 x/3 Feb 12 4.564 -1.2 33.0 x/4 Feb 12 4.564 -0.58 37.0 x/4 Feb 12 4.363 -2.0 30.6 x/4 Feb 12 4.524 -1.2 27.2 x/4 Feb 12 4.524 -1.2 27.2 x/4 Feb 12 4.524 -1.2 27.2 x/4 Feb 12 4.895 0.06 (D) 28.0 x/4 Feb 12 4.895 0.06 (D) 28.0 x/4 Feb 2 4.620 -0.17 22.9 x/4 Feb 3 4.620 -0.15 30.6 x/4 Feb 9 4.818 -0.32 28.9	101	Wagon Road	Jen 30	5.995	7.841	32.7	63.2	8.5	4.6
York Feb. 12 6.081 3.696 36.6 #3 Feb. 12 4.564 -1.2 33.0 #4 Feb. 12 4.728 -0.58 37.0 #5 Feb. 12 4.363 -2.0 30.6 #6 Feb. 12 4.524 -1.2 27.2 #7 Feb. 12 4.895 0.06 (D) 28.0 #12 Feb. 12 4.895 0.06 (D) 28.0 #13 Feb. 12 4.920 -0.17 22.9 #14 Feb. 9 4.620 -0.75 30.6 #18 Feb. 9 4.818 -0.35 28.9	102	Whiskeyjack	Jan. 23	4.610	(0)11.1-	38.7	1.0	0.4 <t< th=""><th>0.2<-W</th></t<>	0.2<-W
#3 Feb.12 4.564 -1.2 33.0 #4 Feb.12 4.728 -0.58 37.0 #5 Feb.12 4.363 -2.0 30.6 #6 Feb.12 4.524 -1.2 27.2 #7 Feb.12 4.973 0.3842 19.5 #9 Feb.12 4.895 0.06 (D) 28.0 #12 Feb.12 4.920 -0.17 22.9 #18 Feb.9 4.620 -0.17 22.9 #18 Feb.9 4.818 -0.32 28.9	103	York	Feb. 2	6.081	3.696	36.6	33.2	6.2	0.4 <t< th=""></t<>
#4 Feb 12 4728 -058 370 #5 Feb 12 4.363 -20 30.6 #6 Feb 12 4.524 -1.2 27.2 #7 Feb 12 4.973 0.3842 19.5 #9 Feb 12 4.895 0.06 (D) 28.0 #17 Feb 12 4.920 -0.17 22.9 #18 Feb 9 4.818 -0.75 30.6 #19 Feb 9 4.818 -0.32 28.9	32	#3	Feb. 12	1.564	-1.2	33.0	35.2	6.2	0.2<=\V
#5 Feb. 12 4.543 -20 30.6 #6 Feb. 12 4.524 -1.2 27.2 #7 Feb. 12 4.895 0.06 (D) 28.0 #12 Feb. 12 4.895 0.06 (D) 28.0 #13 Feb. 12 4.920 -0.17 22.9 #14 Feb. 9 4.620 -0.75 30.6 #18 Feb. 9 4.818 -0.32 28.9	105	য	Feb. 12	4 728	85.0-	37.0	15.4	4, ∞	0.2<=W
86 Feb. 12 4.524 -1 2 27.2 87 Feb. 12 4.973 0.3842 19.5 89 Feb. 12 4.895 0.06 (D) 28.0 812 Feb. 12 4.920 -0.17 22.9 817 Feb. 9 4.620 -0.75 30.6 818 Feb. 9 4.818 -0.32 28.9	901	M S	Feb. 12	4,363	-2.0	30.6	100.0	11.9	0.2<=W
sty Feb. 12 4.973 0.3842 19.5 sty Feb 12 4.895 0.06 (D) 28.0 p12 Feb. 12 4.920 -0.17 22.9 sty Feb. 9 4.620 -0.75 30.6 sts Feb. 9 5.351 2.115 27.1 sty Feb. 9 4.818 -0.32 28.9	107	98	Feb. 12	4.524	-12	27.2	85.8	10.5	0.4 <t< th=""></t<>
s9 Feb 12 4895 0.06 (D) 28.0 s12 Feb 12 4920 -0.17 22.9 s17 Feb 9 4620 -0.75 30.6 s18 Feb 9 4818 -0.32 28.9	108	Ç e	Feb. 12	1.973	0.3842	19.5	83.4	8.6	0.6 <t< th=""></t<>
#12 Feb. 12 4920 -017 229 #17 Feb. 9 4620 -075 30.6 #18 Feb. 9 5351 2.115 27.1 #19 Feb. 9 4818 -032 28.9	100	6.8	Feb 12	4.895	0.06 (D)	28.0	41.6	5.8	1.0
#17 Feb.9 4620 -0.75 30.6 #18 Feb.9 5351 2.115 27.1	110	#12	Feb. 12	4 920	-0.17	22.9	13.8	3.3	0.2<=W
#18 Feb 9 5351 2.115 27.1	111	7114	Feb. 9	1 620	-0.75	30.6	16.0	4.5	0.2<=VV
4818 -032 28.9	112	81#	Feb.9	5.351	2.115	1.72	37.8	5.3	0.2<=\V
Aug. 27 4.709 -0.47 (T) 23.6 (T)	113	618	Feb. 9 Aug. 27	4.818	-0.32 -0.47 (T)	28.9 23.6 (T)	8.8	2.7 7.1	0.2<=W 0.2<=W

Table 2 (cont.). If Coop Unit values not available for conductivity, pH or alkalinity, regression equations were used to estimate Coop Unit values from Toronto (T) or Dorset (D) results.

pH TIP alkalinity
4.849 0.1870
4 966 0 0 0 2 5 3
4.926 -0.22
4.937 0.2821
4.843 -0.31
4.810 0.2412
4.699
5.113 0.0792 4.978 0.11 (T)
4.723 -0.29 -0.28 (T)
4.337 -2.4 4.163 N/A
4.764 0.66 4.74 <u>5</u> 0.28 (T)
2.082
4 853 -0.35
5.917 4.517
6.158 3.693
4.937 0 1334
5.035

If Coop Unit values not available for conductivity, pH or alkalinity, regression equations were used to estimate Coop Unit values from Toronto (T) or Dorset (D) results. Table 2 (cont.).

Number	Lake name	Sampling Date	Hd	TP-alkalinity	Conductivity (uS/cm)	True Colour (TCU)	DOC (mg/L)	DIC (mg/L)
131	M45	Feb. 13	4.922	0.7731	33.5	31.0	17.4	0.6 <t< td=""></t<>
132	9446	Feb. 13	5.5	2.448	29.1	19.2	11.7	0.4 <t< td=""></t<>
133	M50	Feb. 12	4.592	-1.0	34.8	14.6	4.6	0.4 <t< th=""></t<>
134	MSI	Feb. 12	4.669	-0.92	32.3	5.2	2.4	0.4<7
135	#52	Feb. 12	4.660	-1.0	26.5	4.0	1.3	0.2<=W
136	н53	Feb. 12	4.808	-0.26	25.3	12.6	2.4	0.4cT
137	ž	Feb. 12	4.711	-0.82	29.8	1.0	0.5	0.2<=\V
138	н55	Feb. 12	4.934	-0.38	7.22	3.2	Ξ	0.2<→W
139	н59	Feb. 12	6 395	5.652	6.04	18.4	6.3	12
140	19 R	Feb 9	5.278	0.8279	7.25.7	16.0	3.4	0.kT
141	465	Feb 9	5.508	1 578	28.6	12.4	2.6	0.6 <t< td=""></t<>
142	#66	Feb 9	\$.259	0.4643	18.8	8.6	2.8	0.2<=W
143	89#	Feb 9	5.409	0.1844	240	3.2	1.5	0.2<~W
7	#69	Feb 9	5 036	-0.05	25.0	10.6	2.2	0.2<=\V
145	178	Feb. 9	5 123	0 7807	28.7	28.0	5.2	0.6 <t< td=""></t<>
84	н73	Feb. 12	6.263	18.95	74.0	123.0	17.8	8. 8.
147	478	Feb. 12	6.052	6.012	36.6	70.0	10.7	8.1
148	A76	Feb. 12	7.028	43 33	108.2	36.2	10.1	9'01
149	67.M	Feb 9	5.089	2.089	23.6	95.0	12.5	8:1
150	14.80	Feb. 9	5.053	0.2275	28.3	7.8	2.1	0.2 <rw< td=""></rw<>
151	#82	Feb. 13	5.046	0.5002	31.9	6.0	2.7	0.4 <t< td=""></t<>

Table 3. Concentrations in mg/L.

Amiltogen A.Y. Jackson Belsem	Nam 30								anymonium	THE PERSON	nitrite		Phosphorus	Nitrogen	
A.Y. Jackson Balsam		0.2<=W	01.1	0.44	0.44	0.23	4.4	6.5	0.042	0.001<=W	0.075	0.0005<=V	0.002<=W	0.16	1.16
A.Y. Jackson Betsem	Jan. 23	0.4<7	1.85	0.64	0.72	0.36	7.2	9.5	0.026	0.003 <t< td=""><td>0.070</td><td>0.0005<=W</td><td>0.004<t< td=""><td>0.20</td><td>28.</td></t<></td></t<>	0.070	0.0005<=W	0.004 <t< td=""><td>0.20</td><td>28.</td></t<>	0.20	28.
Belsem	Feb. 1	0.4<7	1.70	0.70	0.74	0.37	7.2	7.5	0.062	0.001<-W	0.055	0.0005<-VV	0.004 <t< td=""><td>0.26</td><td>0.32</td></t<>	0.26	0.32
	Jun. 23	D.6 <t< td=""><td>2.90</td><td>0.88</td><td>0.92</td><td>0.57</td><td>11.0</td><td>7.5</td><td>0.018</td><td>0.002<t< td=""><td>0.035</td><td>0.0005<=VV</td><td>0.006<t< td=""><td>0.36</td><td>0.82</td></t<></td></t<></td></t<>	2.90	0.88	0.92	0.57	11.0	7.5	0.018	0.002 <t< td=""><td>0.035</td><td>0.0005<=VV</td><td>0.006<t< td=""><td>0.36</td><td>0.82</td></t<></td></t<>	0.035	0.0005<=VV	0.006 <t< td=""><td>0.36</td><td>0.82</td></t<>	0.36	0.82
Bent	Fcb. 2	0.4 <t< td=""><td>2.65</td><td>08.0</td><td>0.84</td><td>0.44</td><td>10.0</td><td>4.5</td><td>0.004<t< td=""><td>0.005</td><td>0.125</td><td>0.0005<=1V</td><td>0.010</td><td>0.46</td><td>1.82</td></t<></td></t<>	2.65	08.0	0.84	0.44	10.0	4.5	0.004 <t< td=""><td>0.005</td><td>0.125</td><td>0.0005<=1V</td><td>0.010</td><td>0.46</td><td>1.82</td></t<>	0.005	0.125	0.0005<=1V	0.010	0.46	1.82
Bell Bell	Jan. 23	0.4 <t< td=""><td>2.25</td><td>0.78</td><td>0.84</td><td>94.0</td><td>80 80</td><td>8.0</td><td>0.032</td><td>0.002<t< td=""><td>0.080</td><td>0.0005<=\V</td><td>0.006<t< td=""><td>0.32</td><td>86.0</td></t<></td></t<></td></t<>	2.25	0.78	0.84	94.0	80 80	8.0	0.032	0.002 <t< td=""><td>0.080</td><td>0.0005<=\V</td><td>0.006<t< td=""><td>0.32</td><td>86.0</td></t<></td></t<>	0.080	0.0005<=\V	0.006 <t< td=""><td>0.32</td><td>86.0</td></t<>	0.32	86.0
Betty	Aug. 27	0.4<⊤	7.30	1.06	060	0.76	22.6	8.0	0.018	0.006	0.015 <t< td=""><td>0.002<t< td=""><td>D-900:0</td><td>0.40</td><td>0.52</td></t<></td></t<>	0.002 <t< td=""><td>D-900:0</td><td>0.40</td><td>0.52</td></t<>	D-900:0	0.40	0.52
Billy	Aug. 27	0.2<=W	1.55	750	0.72	0.24	9.9	8.0	0 0 1 2	0.004 <t< td=""><td>0.010<t< td=""><td>0.0005<=tV</td><td>0.006<t< td=""><td>0.26</td><td>0.22</td></t<></td></t<></td></t<>	0.010 <t< td=""><td>0.0005<=tV</td><td>0.006<t< td=""><td>0.26</td><td>0.22</td></t<></td></t<>	0.0005<=tV	0.006 <t< td=""><td>0.26</td><td>0.22</td></t<>	0.26	0.22
Bizhiw	Feb. 1	0.4 <t< td=""><td>0,70</td><td>0.24</td><td>0.32</td><td>017</td><td>64 80</td><td>7.0</td><td>0.062</td><td>V=>100.0</td><td>0.135</td><td>0.0005<-VV</td><td>0.004<t< td=""><td>0.12</td><td>0.32</td></t<></td></t<>	0,70	0.24	0.32	017	64 80	7.0	0.062	V=>100.0	0.135	0.0005<-VV	0.004 <t< td=""><td>0.12</td><td>0.32</td></t<>	0.12	0.32
Bodina	Feb. 2	D.6 <t< td=""><td>4.50</td><td>891</td><td>111</td><td>19:0</td><td>18.2</td><td>8.5</td><td>0.328</td><td>0.007</td><td>0.085</td><td>0.0005<=\V</td><td>0.010</td><td>96'0</td><td>96'0</td></t<>	4.50	891	11 1	19:0	18.2	8.5	0.328	0.007	0.085	0.0005<=\V	0.010	96'0	96'0
Boundary.	Feb. 2	0.4 <t< td=""><td>1.35</td><td>05.0</td><td>22.0</td><td>0 35</td><td>₹'\$</td><td>6.5</td><td>080 0</td><td>0.003<t< td=""><td>0.085</td><td>0.0005<¬\V</td><td>0.004cT</td><td>0.26</td><td>0.70</td></t<></td></t<>	1.35	05.0	22.0	0 35	₹'\$	6.5	080 0	0.003 <t< td=""><td>0.085</td><td>0.0005<¬\V</td><td>0.004cT</td><td>0.26</td><td>0.70</td></t<>	0.085	0.0005<¬\V	0.004cT	0.26	0.70
Burnyrabbit	t Jan 23	0.4 <t< td=""><td>1.10</td><td>0.36</td><td>0+10</td><td>0.20</td><td>4.2</td><td>7.5</td><td>0.064</td><td>W~>100.0</td><td>0.140</td><td>0.0005<=\text{V}</td><td>0.002<=\text{V}</td><td>0.12</td><td>0.62</td></t<>	1.10	0.36	0+10	0.20	4.2	7.5	0.064	W~>100.0	0.140	0.0005<=\text{V}	0.002<=\text{V}	0.12	0.62
Burke	Feb. 2	0.4 <t< td=""><td>1.40</td><td>0.48</td><td>0.52</td><td>0.26</td><td>P'5</td><td>7.5</td><td>890 0</td><td>0.002<t< td=""><td>0.0\$5</td><td>0.0005<=VV</td><td>0.004<t< td=""><td>0.26</td><td>1.38</td></t<></td></t<></td></t<>	1.40	0.48	0.52	0.26	P'5	7.5	890 0	0.002 <t< td=""><td>0.0\$5</td><td>0.0005<=VV</td><td>0.004<t< td=""><td>0.26</td><td>1.38</td></t<></td></t<>	0.0\$5	0.0005<=VV	0.004 <t< td=""><td>0.26</td><td>1.38</td></t<>	0.26	1.38
Cumis	Feb. 2	1.2	7.60	3.32	1.92	1.05	32.6	10.0	0.058	0.011	0.150	0.0045	0.026	06:0	3.88
Cartyle	Feb. 1	0.4 <t< td=""><td>8:</td><td>0.72</td><td>88.0</td><td>0.34</td><td>7.6</td><td>7.5</td><td>0.040</td><td>0.001</td><td>0.050</td><td>0.0005<=W</td><td>1>+00'0</td><td>0.24</td><td>1.02</td></t<>	8:	0.72	88.0	0.34	7.6	7.5	0.040	0.001	0.050	0.0005<=W	1>+00'0	0.24	1.02
Carmichael	Feb. 2	0.4 <t< td=""><td>1.55</td><td>94-0</td><td>0.52</td><td>0.23</td><td>5.8</td><td>5.01</td><td>0.048</td><td>0.001 < ·W</td><td>0.195</td><td>0.0005<=W</td><td>0.002<=VV</td><td>0.12</td><td>0.54</td></t<>	1.55	94-0	0.52	0.23	5.8	5.01	0.048	0.001 < ·W	0.195	0.0005<=W	0.002<=VV	0.12	0.54
3	Feb. 2	0.4 <t< td=""><td>2.70</td><td>1.08</td><td>0.92</td><td>0.48</td><td>11.2</td><td>6.0</td><td>0.002< ·W</td><td>0.002<t< td=""><td>0.165</td><td>0.0005<=VV</td><td>D.008<t< td=""><td>0.30</td><td>95.0</td></t<></td></t<></td></t<>	2.70	1.08	0.92	0.48	11.2	6.0	0.002< ·W	0.002 <t< td=""><td>0.165</td><td>0.0005<=VV</td><td>D.008<t< td=""><td>0.30</td><td>95.0</td></t<></td></t<>	0.165	0.0005<=VV	D.008 <t< td=""><td>0.30</td><td>95.0</td></t<>	0.30	95.0
Cave	Feb. 1	0.4 <t< td=""><td>1.95</td><td>88.0</td><td>0.70</td><td>0.44</td><td>8.4</td><td>8.5</td><td>0.138</td><td>V.−>100.0</td><td>0,050</td><td>0.0005<=VV</td><td>0.008<t< td=""><td>0.42</td><td>1,23</td></t<></td></t<>	1.95	88.0	0.70	0.44	8.4	8.5	0.138	V.−>100.0	0,050	0.0005<=VV	0.008 <t< td=""><td>0.42</td><td>1,23</td></t<>	0.42	1,23
Chain	Jun. 23	D.4 <t< td=""><td>1.30</td><td>PT-0</td><td>95 0</td><td>0.37</td><td>5.0</td><td>7.5</td><td>0.098</td><td>0.003<t< td=""><td>090'0</td><td>0.0005<=W</td><td>0.006<t< td=""><td>0.40</td><td>138</td></t<></td></t<></td></t<>	1.30	PT-0	95 0	0.37	5.0	7.5	0.098	0.003 <t< td=""><td>090'0</td><td>0.0005<=W</td><td>0.006<t< td=""><td>0.40</td><td>138</td></t<></td></t<>	090'0	0.0005<=W	0.006 <t< td=""><td>0.40</td><td>138</td></t<>	0.40	138
	Jan. 30	D.4 <t< td=""><td>02.1</td><td>\$1.0</td><td>09:0</td><td>0 39</td><td>44. 80.</td><td>7.0</td><td>0.092</td><td>0.001<=W</td><td>0.065</td><td>0.0005<=VV</td><td>0.006<t< td=""><td>0.40</td><td>1.62</td></t<></td></t<>	02.1	\$ 1 .0	09:0	0 39	44. 80.	7.0	0.092	0.001<=W	0.065	0.0005<=VV	0.006 <t< td=""><td>0.40</td><td>1.62</td></t<>	0.40	1.62
Cleanite	Jan. 23	0.4 <t< td=""><td>1.10</td><td>0.38</td><td>0.48</td><td>0.27</td><td>4,4</td><td>7.0</td><td>0.020</td><td>0.001<=₩</td><td>0.045</td><td>0.0005<=W</td><td>0.004<t< td=""><td>0.14</td><td>1.06</td></t<></td></t<>	1.10	0.38	0.48	0.27	4,4	7.0	0.020	0.001<=₩	0.045	0.0005<=W	0.004 <t< td=""><td>0.14</td><td>1.06</td></t<>	0.14	1.06
Cranberry B.	Feb. 1	0.4 <t< td=""><td>2.45</td><td>1.08</td><td>8</td><td>29.0</td><td>9:01</td><td>4.0</td><td>0.324</td><td>900:0</td><td>0.040</td><td>0.0005<=W</td><td>0.016</td><td>0.82</td><td>89:</td></t<>	2.45	1.08	8	29.0	9:01	4.0	0.324	900:0	0.040	0.0005<=W	0.016	0.82	89:

Table 3 (cont.). Concentrations in mg/L.

						-			_											_		
Silicate	1.12	98.0	0.16	0.52	89.0	1.72	2 0 2	0.12	0.78	0.92	1.06	0.72	1.30	0.34	0.34	1.68	1.24	1.74	0.34	0.40	0.48	0.44
Total Nitrogen	3.0	,	0.32	91.0	0.40	0.36	1	0.34	0.12	i	0.38	95.0	0.20	0.12	1	0.40	91.0	0.50	0.42	0.18	1.06	1
Total Phosphorus	0.004 <t< th=""><th>ŧ</th><th>0.006<t< th=""><th>0.002<=W</th><th>0.008<t< th=""><th>0.004<t< th=""><th>1</th><th>0.006<t< th=""><th>0.002<-V</th><th>1</th><th>0.006<t< th=""><th>D.008<t< th=""><th>0.002<=\V</th><th>0.004<t< th=""><th>-</th><th>0.008<t< th=""><th>0.002<=\V</th><th>0.014</th><th>0.010</th><th>0.004<t< th=""><th>ŀ</th><th>1</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	ŧ	0.006 <t< th=""><th>0.002<=W</th><th>0.008<t< th=""><th>0.004<t< th=""><th>1</th><th>0.006<t< th=""><th>0.002<-V</th><th>1</th><th>0.006<t< th=""><th>D.008<t< th=""><th>0.002<=\V</th><th>0.004<t< th=""><th>-</th><th>0.008<t< th=""><th>0.002<=\V</th><th>0.014</th><th>0.010</th><th>0.004<t< th=""><th>ŀ</th><th>1</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.002<=W	0.008 <t< th=""><th>0.004<t< th=""><th>1</th><th>0.006<t< th=""><th>0.002<-V</th><th>1</th><th>0.006<t< th=""><th>D.008<t< th=""><th>0.002<=\V</th><th>0.004<t< th=""><th>-</th><th>0.008<t< th=""><th>0.002<=\V</th><th>0.014</th><th>0.010</th><th>0.004<t< th=""><th>ŀ</th><th>1</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.004 <t< th=""><th>1</th><th>0.006<t< th=""><th>0.002<-V</th><th>1</th><th>0.006<t< th=""><th>D.008<t< th=""><th>0.002<=\V</th><th>0.004<t< th=""><th>-</th><th>0.008<t< th=""><th>0.002<=\V</th><th>0.014</th><th>0.010</th><th>0.004<t< th=""><th>ŀ</th><th>1</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	1	0.006 <t< th=""><th>0.002<-V</th><th>1</th><th>0.006<t< th=""><th>D.008<t< th=""><th>0.002<=\V</th><th>0.004<t< th=""><th>-</th><th>0.008<t< th=""><th>0.002<=\V</th><th>0.014</th><th>0.010</th><th>0.004<t< th=""><th>ŀ</th><th>1</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.002<-V	1	0.006 <t< th=""><th>D.008<t< th=""><th>0.002<=\V</th><th>0.004<t< th=""><th>-</th><th>0.008<t< th=""><th>0.002<=\V</th><th>0.014</th><th>0.010</th><th>0.004<t< th=""><th>ŀ</th><th>1</th></t<></th></t<></th></t<></th></t<></th></t<>	D.008 <t< th=""><th>0.002<=\V</th><th>0.004<t< th=""><th>-</th><th>0.008<t< th=""><th>0.002<=\V</th><th>0.014</th><th>0.010</th><th>0.004<t< th=""><th>ŀ</th><th>1</th></t<></th></t<></th></t<></th></t<>	0.002<=\V	0.004 <t< th=""><th>-</th><th>0.008<t< th=""><th>0.002<=\V</th><th>0.014</th><th>0.010</th><th>0.004<t< th=""><th>ŀ</th><th>1</th></t<></th></t<></th></t<>	-	0.008 <t< th=""><th>0.002<=\V</th><th>0.014</th><th>0.010</th><th>0.004<t< th=""><th>ŀ</th><th>1</th></t<></th></t<>	0.002<=\V	0.014	0.010	0.004 <t< th=""><th>ŀ</th><th>1</th></t<>	ŀ	1
Phosphate	0.0005<=W	0.0005<=W	0.0015 <t< th=""><th>0.0005<=W</th><th>0.0005<-tV</th><th>0.000\$<=\V</th><th>0.000\$<=W</th><th>D.0015<t< th=""><th>0.0005<-W</th><th>0.0015<t< th=""><th>0.0005<=W</th><th>0.0005<=\V</th><th>0.0005<=VV</th><th>0.0005<=:W</th><th>0.0010<t< th=""><th>0.0005<=tV</th><th>0.0005<=W</th><th>0.0005<-W</th><th>0.0015<t< th=""><th>V->5000.0</th><th>W=>5000.0</th><th>0.0010<t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.0005<=W	0.0005<-tV	0.000\$<=\V	0.000\$<=W	D.0015 <t< th=""><th>0.0005<-W</th><th>0.0015<t< th=""><th>0.0005<=W</th><th>0.0005<=\V</th><th>0.0005<=VV</th><th>0.0005<=:W</th><th>0.0010<t< th=""><th>0.0005<=tV</th><th>0.0005<=W</th><th>0.0005<-W</th><th>0.0015<t< th=""><th>V->5000.0</th><th>W=>5000.0</th><th>0.0010<t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	0.0005<-W	0.0015 <t< th=""><th>0.0005<=W</th><th>0.0005<=\V</th><th>0.0005<=VV</th><th>0.0005<=:W</th><th>0.0010<t< th=""><th>0.0005<=tV</th><th>0.0005<=W</th><th>0.0005<-W</th><th>0.0015<t< th=""><th>V->5000.0</th><th>W=>5000.0</th><th>0.0010<t< th=""></t<></th></t<></th></t<></th></t<>	0.0005<=W	0.0005<=\V	0.0005<=VV	0.0005<=:W	0.0010 <t< th=""><th>0.0005<=tV</th><th>0.0005<=W</th><th>0.0005<-W</th><th>0.0015<t< th=""><th>V->5000.0</th><th>W=>5000.0</th><th>0.0010<t< th=""></t<></th></t<></th></t<>	0.0005<=tV	0.0005<=W	0.0005<-W	0.0015 <t< th=""><th>V->5000.0</th><th>W=>5000.0</th><th>0.0010<t< th=""></t<></th></t<>	V->5000.0	W=>5000.0	0.0010 <t< th=""></t<>
Nitrate + nitrate	0.035	0.055	0.010×T	90:0	0.125	0.095	0.145	V1->\$00.0	0.070	960.0	0.070	0.100	0.125	0.080	0.065	0.135	060:0	0.155	0.015 <t< th=""><th>0.055</th><th>0.035</th><th>0.020<t< th=""></t<></th></t<>	0.055	0.035	0.020 <t< th=""></t<>
Nitrite	0.003 <t< th=""><th>0.007</th><th>T>#00:0</th><th>0.002<t< th=""><th>0.003<t< th=""><th>0.004<t< th=""><th>0 003<t< th=""><th>0.004<t< th=""><th>0.003<t< th=""><th>VI≈>100 0</th><th>0.003<t< th=""><th>0.004<t< th=""><th>0.003<t< th=""><th>VV->100.0</th><th>0.001<-W</th><th>900:0</th><th>0.002<t< th=""><th>0.003<t< th=""><th>0.008</th><th>0.002<t< th=""><th>0 002<t< th=""><th>W=>100.0</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.007	T>#00:0	0.002 <t< th=""><th>0.003<t< th=""><th>0.004<t< th=""><th>0 003<t< th=""><th>0.004<t< th=""><th>0.003<t< th=""><th>VI≈>100 0</th><th>0.003<t< th=""><th>0.004<t< th=""><th>0.003<t< th=""><th>VV->100.0</th><th>0.001<-W</th><th>900:0</th><th>0.002<t< th=""><th>0.003<t< th=""><th>0.008</th><th>0.002<t< th=""><th>0 002<t< th=""><th>W=>100.0</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.003 <t< th=""><th>0.004<t< th=""><th>0 003<t< th=""><th>0.004<t< th=""><th>0.003<t< th=""><th>VI≈>100 0</th><th>0.003<t< th=""><th>0.004<t< th=""><th>0.003<t< th=""><th>VV->100.0</th><th>0.001<-W</th><th>900:0</th><th>0.002<t< th=""><th>0.003<t< th=""><th>0.008</th><th>0.002<t< th=""><th>0 002<t< th=""><th>W=>100.0</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.004 <t< th=""><th>0 003<t< th=""><th>0.004<t< th=""><th>0.003<t< th=""><th>VI≈>100 0</th><th>0.003<t< th=""><th>0.004<t< th=""><th>0.003<t< th=""><th>VV->100.0</th><th>0.001<-W</th><th>900:0</th><th>0.002<t< th=""><th>0.003<t< th=""><th>0.008</th><th>0.002<t< th=""><th>0 002<t< th=""><th>W=>100.0</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0 003 <t< th=""><th>0.004<t< th=""><th>0.003<t< th=""><th>VI≈>100 0</th><th>0.003<t< th=""><th>0.004<t< th=""><th>0.003<t< th=""><th>VV->100.0</th><th>0.001<-W</th><th>900:0</th><th>0.002<t< th=""><th>0.003<t< th=""><th>0.008</th><th>0.002<t< th=""><th>0 002<t< th=""><th>W=>100.0</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.004 <t< th=""><th>0.003<t< th=""><th>VI≈>100 0</th><th>0.003<t< th=""><th>0.004<t< th=""><th>0.003<t< th=""><th>VV->100.0</th><th>0.001<-W</th><th>900:0</th><th>0.002<t< th=""><th>0.003<t< th=""><th>0.008</th><th>0.002<t< th=""><th>0 002<t< th=""><th>W=>100.0</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.003 <t< th=""><th>VI≈>100 0</th><th>0.003<t< th=""><th>0.004<t< th=""><th>0.003<t< th=""><th>VV->100.0</th><th>0.001<-W</th><th>900:0</th><th>0.002<t< th=""><th>0.003<t< th=""><th>0.008</th><th>0.002<t< th=""><th>0 002<t< th=""><th>W=>100.0</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	VI≈>100 0	0.003 <t< th=""><th>0.004<t< th=""><th>0.003<t< th=""><th>VV->100.0</th><th>0.001<-W</th><th>900:0</th><th>0.002<t< th=""><th>0.003<t< th=""><th>0.008</th><th>0.002<t< th=""><th>0 002<t< th=""><th>W=>100.0</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.004 <t< th=""><th>0.003<t< th=""><th>VV->100.0</th><th>0.001<-W</th><th>900:0</th><th>0.002<t< th=""><th>0.003<t< th=""><th>0.008</th><th>0.002<t< th=""><th>0 002<t< th=""><th>W=>100.0</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.003 <t< th=""><th>VV->100.0</th><th>0.001<-W</th><th>900:0</th><th>0.002<t< th=""><th>0.003<t< th=""><th>0.008</th><th>0.002<t< th=""><th>0 002<t< th=""><th>W=>100.0</th></t<></th></t<></th></t<></th></t<></th></t<>	VV->100.0	0.001<-W	900:0	0.002 <t< th=""><th>0.003<t< th=""><th>0.008</th><th>0.002<t< th=""><th>0 002<t< th=""><th>W=>100.0</th></t<></th></t<></th></t<></th></t<>	0.003 <t< th=""><th>0.008</th><th>0.002<t< th=""><th>0 002<t< th=""><th>W=>100.0</th></t<></th></t<></th></t<>	0.008	0.002 <t< th=""><th>0 002<t< th=""><th>W=>100.0</th></t<></th></t<>	0 002 <t< th=""><th>W=>100.0</th></t<>	W=>100.0
Ammonia +	0274	0.516	0.010	950'0	950.0	0140	060.0	0.014	0.050	990.0	820.0	0.058	0.058	090.0	090:0	0.082	0.044	940.0	810.0	0.052	0.036	0.050
Sulphate	9.0	3.0	6.0	7.5	5.6	7.5	8.0	1.5	7.5	7.5	9.5	5.0	6.0	7.0	7.0	8.0	8.5	7.0	7.0	7.5	8.0	8.0
Hardness	10.4	2.6	90 90	\$22	11.4	5.4	6.0	17.2	7.0	8.0	13.2	104	7.8	4.6	2.8	10.4	7.8	13.2	10.2	7.4	6.4	6.4
Potassium	0.40	0.67	0.38	0.26	J.0	030	0.31	0 63	034	0 39	0.61	0.52	0.34	0.18	016	0.48	0.38	7.0	0.48	0.23	0.31	0.32
Sodium	0.82	0.48	0.76	95.0	3 6:0	0.52	090	0.86	0.72	0.80	1.06	1.61	0.72	0.48	0.32	0.8-4	0.76	0.88	1.02	0.54	0.68	0.64
Magnesium	960	0.20	89:0	0.44	88.0	0 80	0.52	960	0.62	0 70	860	1.00	0.68	0.36	0.24	08.0	0.72	96.0	06:0	15.0	0.58	0.58
Calcium	2.60	0.65	2 40	1.40	3.15	1.35	1.50	5.25	1.75	2 00	3.65	2.55	2.00	1.25	08.0	2.85	1.95	3.65	2.55	2.05	1.60	1.60
Chloride	1.2	0.4 <t< th=""><th>0.2<=W</th><th>0.8<t< th=""><th>0.6<Ţ</th><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>06<t< th=""><th><u>8:</u></th><th>0,4<t< th=""><th>0 4<t< th=""><th>0.4<t< th=""><th>0.6<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.2<=W	0.8 <t< th=""><th>0.6<Ţ</th><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>06<t< th=""><th><u>8:</u></th><th>0,4<t< th=""><th>0 4<t< th=""><th>0.4<t< th=""><th>0.6<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.6<Ţ	0.4 <t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>06<t< th=""><th><u>8:</u></th><th>0,4<t< th=""><th>0 4<t< th=""><th>0.4<t< th=""><th>0.6<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.4 <t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>06<t< th=""><th><u>8:</u></th><th>0,4<t< th=""><th>0 4<t< th=""><th>0.4<t< th=""><th>0.6<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.4 <t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>06<t< th=""><th><u>8:</u></th><th>0,4<t< th=""><th>0 4<t< th=""><th>0.4<t< th=""><th>0.6<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.4 <t< th=""><th>0.4<t< th=""><th>06<t< th=""><th><u>8:</u></th><th>0,4<t< th=""><th>0 4<t< th=""><th>0.4<t< th=""><th>0.6<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.4 <t< th=""><th>06<t< th=""><th><u>8:</u></th><th>0,4<t< th=""><th>0 4<t< th=""><th>0.4<t< th=""><th>0.6<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	06 <t< th=""><th><u>8:</u></th><th>0,4<t< th=""><th>0 4<t< th=""><th>0.4<t< th=""><th>0.6<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	<u>8:</u>	0,4 <t< th=""><th>0 4<t< th=""><th>0.4<t< th=""><th>0.6<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0 4 <t< th=""><th>0.4<t< th=""><th>0.6<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.4 <t< th=""><th>0.6<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.6 <t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.4 <t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.4 <t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	0.4 <t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>0.4<t< th=""></t<></th></t<></th></t<></th></t<>	0.4 <t< th=""><th>0.4<t< th=""><th>0.4<t< th=""></t<></th></t<></th></t<>	0.4 <t< th=""><th>0.4<t< th=""></t<></th></t<>	0.4 <t< th=""></t<>
Бале	Feb. 2	Feb. 9	Aug. 27	Feb. 2	Jan. 23	Fcb. 2	Feb. 9	Aug 27	Jan. 24	Feb. 12	Jan 23	Jan 23	Feb. 2	Jan. 24	Feb 12	Feb. 2	Jan. 30	Jan. 24	Aug. 27	Feb. 2	Jan 24	Feb. 12
Lake name	Crater (East)	Crater (West)	Cuckoo	David	Descon	de Lamor.		East Houry	Fish		Fox	Frank	Freeland	Gail		Gem	Сеоте	Goose	Goschen	Grace	Great	Modelan
Number	22	23	75	25	36	27		28	8.		30	31	32	33		ಸ	35	36	37	38	39	

Table 3 (cont.). Concentrations in mg/L.

Number	Lake name	Die	Chloride	Calcium	Magnesium	Sodium	Polassium	Hardness	Sulphate	ammonia +	Nitrite	Nitrate + nitrite	Phosphate	Total Phosphorus	Total Nitrogen	Silicate
40	Green	Jan. 23	0.6 <t< th=""><th>2.30</th><th>08.0</th><th>0.92</th><th>0.39</th><th>9.0</th><th>8.0</th><th>0.140</th><th>0.005</th><th>091.0</th><th>0.0005<=W</th><th>0.010</th><th>09:0</th><th>1.16</th></t<>	2.30	08.0	0.92	0.39	9.0	8.0	0.140	0.005	091.0	0.0005<=W	0.010	09:0	1.16
41	Grey	Aug. 27	D.4CT	1.55	0.64	0.76	0.37	6.4	8.5	0.038	0.003 <t< td=""><td>0.055</td><td>0.0005<=W</td><td>0.006<t< td=""><td>0.24</td><td>1.20</td></t<></td></t<>	0.055	0.0005<=W	0.006 <t< td=""><td>0.24</td><td>1.20</td></t<>	0.24	1.20
29	Grow	Jan 24	D#1	4.05	97.0	0.76	0.36	13.2	6.5	0.016	0.004 <t< td=""><td>0.115</td><td>0.0005<=W</td><td>0.006<t< td=""><td>0.32</td><td>0:30</td></t<></td></t<>	0.115	0.0005<=W	0.006 <t< td=""><td>0.32</td><td>0:30</td></t<>	0.32	0:30
48	Hanwood	Feb. 2	0.4 <t< td=""><td>3.20</td><td>26:0</td><td>98.0</td><td>0.42</td><td>11.8</td><td>5.5</td><td>₩0.0</td><td>0.004<t< td=""><td>0.110</td><td>0.0005<=W</td><td>D-900:0</td><td>0.34</td><td>96:0</td></t<></td></t<>	3.20	26:0	98.0	0.42	11.8	5.5	₩0.0	0.004 <t< td=""><td>0.110</td><td>0.0005<=W</td><td>D-900:0</td><td>0.34</td><td>96:0</td></t<>	0.110	0.0005<=W	D-900:0	0.34	96:0
7	Harry	Jan. 23	0.4 <t< td=""><td>230</td><td>08.0</td><td>0 80</td><td>0.47</td><td>9.0</td><td>6.5</td><td>0 036</td><td>0.004<t< td=""><td>0,070</td><td>0.0005<=1V</td><td>0.006<t< td=""><td>0.34</td><td>0.62</td></t<></td></t<></td></t<>	230	08.0	0 80	0.47	9.0	6.5	0 036	0.004 <t< td=""><td>0,070</td><td>0.0005<=1V</td><td>0.006<t< td=""><td>0.34</td><td>0.62</td></t<></td></t<>	0,070	0.0005<=1V	0.006 <t< td=""><td>0.34</td><td>0.62</td></t<>	0.34	0.62
		Feb. 13	0.4 <t< td=""><td>2.30</td><td>08.0</td><td>0.60</td><td>0.46</td><td>9.0</td><td>6.5</td><td>0.038</td><td>0.004<t< td=""><td>060'0</td><td>0.0015<t< td=""><td>_</td><td>ı</td><td>0.66</td></t<></td></t<></td></t<>	2.30	08.0	0.60	0.46	9.0	6.5	0.038	0.004 <t< td=""><td>060'0</td><td>0.0015<t< td=""><td>_</td><td>ı</td><td>0.66</td></t<></td></t<>	060'0	0.0015 <t< td=""><td>_</td><td>ı</td><td>0.66</td></t<>	_	ı	0.66
45	Heaven	Jan 23	D.4 <t< td=""><td>0.70</td><td>0.28</td><td>0.32</td><td>0.22</td><td>2.8</td><td>5.0</td><td>0.142</td><td>0.004<t< td=""><td>080'0</td><td>0.0005<=VV</td><td>0.006<t< td=""><td>0.38</td><td>1.00</td></t<></td></t<></td></t<>	0.70	0.28	0.32	0.22	2.8	5.0	0.142	0.004 <t< td=""><td>080'0</td><td>0.0005<=VV</td><td>0.006<t< td=""><td>0.38</td><td>1.00</td></t<></td></t<>	080'0	0.0005<=VV	0.006 <t< td=""><td>0.38</td><td>1.00</td></t<>	0.38	1.00
94	Helen	Jan. 30	T>4.0	2.65	1.00	98'0	0.45	10.8	7.5	0.028	0.001<=VV	0110	0.0005<=VV	T>#00.0	0.24	1.66
47	Hemlock	Jan 23	0.4 <t< td=""><td>1.65</td><td>0.52</td><td>0.56</td><td>0.34</td><td>6.4</td><td>11.0</td><td>0.072</td><td>0.001<≃VV</td><td>0910</td><td>0.0005<=\V</td><td>0.002<≠W</td><td>0.18</td><td>0.68</td></t<>	1.65	0.52	0.56	0.34	6.4	11.0	0.072	0.001<≃VV	0910	0.0005<=\V	0.002<≠W	0.18	0.68
87	Howny	Feb. 2	0.4 <t< td=""><td>2.85</td><td>0.84</td><td>0.88</td><td>0.46</td><td>10.6</td><td>7.5</td><td>0:030</td><td>0.004cT</td><td>0.105</td><td>0.0005<=W</td><td>900:0</td><td>0.36</td><td>1.24</td></t<>	2.85	0.84	0.88	0.46	10.6	7.5	0:030	0.004cT	0.105	0.0005<=W	900:0	0.36	1.24
617	Ishmael	Jan. 30	0.4 <t< td=""><td>2.75</td><td>1.04</td><td>0.88</td><td>0.42</td><td>11.2</td><td>8.0</td><td>0.026</td><td>0.002<t< td=""><td>080.0</td><td>0.0005<=VV</td><td>1>#0000</td><td>0.22</td><td>1.02</td></t<></td></t<>	2.75	1.04	0.88	0.42	11.2	8.0	0.026	0.002 <t< td=""><td>080.0</td><td>0.0005<=VV</td><td>1>#0000</td><td>0.22</td><td>1.02</td></t<>	080.0	0.0005<=VV	1>#0000	0.22	1.02
9.	Johnnie	Jan 23	0.4 <t< td=""><td>1.90</td><td>0.64</td><td>0.72</td><td>0.37</td><td>7.4</td><td>7.5</td><td>0.044</td><td>0.003<t< td=""><td>\$60:0</td><td>0.0005<=W</td><td>1>1000</td><td>0.24</td><td>1.00</td></t<></td></t<>	1.90	0.64	0.72	0.37	7.4	7.5	0.044	0.003 <t< td=""><td>\$60:0</td><td>0.0005<=W</td><td>1>1000</td><td>0.24</td><td>1.00</td></t<>	\$60:0	0.0005<=W	1>1000	0.24	1.00
18	Kakakise	Jan. 30	0.6 <t< td=""><td>2.30</td><td>0.86</td><td>0.84</td><td>0.40</td><td>9.2</td><td>8.0</td><td>810.0</td><td>0.001<-W</td><td>0.055</td><td>0 0005<=VV</td><td>0.004<t< td=""><td>0.22</td><td>0.88</td></t<></td></t<>	2.30	0.86	0.84	0.40	9.2	8.0	810.0	0.001<-W	0.055	0 0005<=VV	0.004 <t< td=""><td>0.22</td><td>0.88</td></t<>	0.22	0.88
52	Kidney	Feb 1	0.4 <t< td=""><td>2.00</td><td>0.70</td><td>1970</td><td>0.32</td><td>7.8</td><td>8.0</td><td>0.062</td><td>0.001<=W</td><td>0.135</td><td>0.00005<=W</td><td>0.006<t< td=""><td>0.28</td><td>2.64</td></t<></td></t<>	2.00	0.70	1970	0.32	7.8	8.0	0.062	0.001<=W	0.135	0.00005<=W	0.006 <t< td=""><td>0.28</td><td>2.64</td></t<>	0.28	2.64
53	Killamey	Jan 30	0.4 <t< td=""><td>0971</td><td>0.56</td><td>99'0</td><td>0.32</td><td>6.4</td><td>9.0</td><td>0.042</td><td>0.001<=W</td><td>0.135</td><td>0.0005<=VV</td><td>0.004<t< td=""><td>0.14</td><td>1.34</td></t<></td></t<>	0971	0.56	99'0	0.32	6.4	9.0	0.042	0.001<=W	0.135	0.0005<=VV	0.004 <t< td=""><td>0.14</td><td>1.34</td></t<>	0.14	1.34
3	Lake of the Woods	Aug 27	0.2<-W	1.45	1970	0.68	0 30	6.2	8.0	910.0	0.003 <t< td=""><td>0.005<≂W</td><td>0.0010<t< td=""><td>0.008<t< td=""><td>0.28</td><td>0.02<=W</td></t<></td></t<></td></t<>	0.005<≂W	0.0010 <t< td=""><td>0.008<t< td=""><td>0.28</td><td>0.02<=W</td></t<></td></t<>	0.008 <t< td=""><td>0.28</td><td>0.02<=W</td></t<>	0.28	0.02<=W
55	Little Bell	Jan. 23	0.6 <t< td=""><td>1.30</td><td>0.44</td><td>0.58</td><td>0.38</td><td>5.2</td><td>7.0</td><td>0.102</td><td>0.003<t< td=""><td>0.100</td><td>0.0005<=VV</td><td>0.006<t< td=""><td>0.46</td><td>1.70</td></t<></td></t<></td></t<>	1.30	0.44	0.58	0.38	5.2	7.0	0.102	0.003 <t< td=""><td>0.100</td><td>0.0005<=VV</td><td>0.006<t< td=""><td>0.46</td><td>1.70</td></t<></td></t<>	0.100	0.0005<=VV	0.006 <t< td=""><td>0.46</td><td>1.70</td></t<>	0.46	1.70
		Jan. 30	0.4 <t< td=""><td>1 30</td><td>0.44</td><td>09'0</td><td>0.40</td><td>8.0</td><td>7.5</td><td>0.080</td><td>0.002<t< td=""><td>0.065</td><td>0.0005<=VV</td><td>0.006<t< td=""><td>0.40</td><td>1.80</td></t<></td></t<></td></t<>	1 30	0.44	09'0	0.40	8.0	7.5	0.080	0.002 <t< td=""><td>0.065</td><td>0.0005<=VV</td><td>0.006<t< td=""><td>0.40</td><td>1.80</td></t<></td></t<>	0.065	0.0005<=VV	0.006 <t< td=""><td>0.40</td><td>1.80</td></t<>	0.40	1.80
×	Little Mink	Jan. 24	0.4 <t< td=""><td>4.80</td><td>1.08</td><td>1.04</td><td>0.62</td><td>16.4</td><td>0.9</td><td>0.112</td><td>0.009</td><td>0.095</td><td>0.0005<=W</td><td>0.012</td><td>0.42</td><td>0.56</td></t<>	4.80	1.08	1.04	0.62	16.4	0.9	0.112	0.009	0.095	0.0005<=W	0.012	0.42	0.56
57	Little Mountain	Jan. 24	T>4.0	1.65	0.48	09:0	0.28	0.9	0.6	0.028	0.001<=W	0.055	0.0005<=VV	0.004 <t< td=""><td>0.18</td><td>1.34</td></t<>	0.18	1.34
58	Late Stepinate	Feb. I	0.4KT	2.40	1.16	1.10	0.75	10.8	7.5	0.074	0.002 <t< td=""><td>0.100</td><td>0.0005<=W</td><td>0.006<t< td=""><td>0.34</td><td>1.40</td></t<></td></t<>	0.100	0.0005<=W	0.006 <t< td=""><td>0.34</td><td>1.40</td></t<>	0.34	1.40
\$	Little Superior	Jan. 23	0.4 <t< td=""><td>1.10</td><td>0.34</td><td>0.36</td><td>0.22</td><td>4.2</td><td>11.5</td><td>0.026</td><td>0.001<=\V</td><td>091.0</td><td>0.0005<=W</td><td>0.002<=\V</td><td>0.06<t< td=""><td>0.20</td></t<></td></t<>	1.10	0.34	0.36	0.22	4.2	11.5	0.026	0.001<=\V	091.0	0.0005<=W	0.002<=\V	0.06 <t< td=""><td>0.20</td></t<>	0.20
99	Log Boom	Jan. 23	0.4 <t< td=""><td>.1.65</td><td>95:0</td><td>0.64</td><td>0.34</td><td>6.4</td><td>7.5</td><td>0.126</td><td>0.003<t< td=""><td>0,075</td><td>0.0005<=W</td><td>D.006<t< td=""><td>0.30</td><td>86:0</td></t<></td></t<></td></t<>	.1.65	95:0	0.64	0.34	6.4	7.5	0.126	0.003 <t< td=""><td>0,075</td><td>0.0005<=W</td><td>D.006<t< td=""><td>0.30</td><td>86:0</td></t<></td></t<>	0,075	0.0005<=W	D.006 <t< td=""><td>0.30</td><td>86:0</td></t<>	0.30	86:0

Table 3 (cont.). Concentrations in mg/L.

Number	Lake name	Date	Chloride	Calcium	Magnesium	Sodium	Potassium	Hardness	Sulphate	Ammonia + Ammonium	Nigite	Nivate + nivite	Phosphate	Total Phosphorus	Total	Silicate
19	Low.	Jan. 30	1.6	8.40	2.12	1,44	0.62	29.8	10.5	0.008 <t< td=""><td>0.001<∺W</td><td>0.040</td><td>0.0005<=W</td><td>0.004<t< td=""><td>0.18</td><td>0.78</td></t<></td></t<>	0.001<∺W	0.040	0.0005<=W	0.004 <t< td=""><td>0.18</td><td>0.78</td></t<>	0.18	0.78
62	Lumsden	Jan. 30	0.4 <t< td=""><td>1.15</td><td>0.44</td><td>0.44</td><td>0.22</td><td>4.6</td><td>6.5</td><td>0.038</td><td>W->100.0</td><td>0.080</td><td>0.0005<=1V</td><td>0.002<=W</td><td>0.16</td><td>1.26</td></t<>	1.15	0.44	0.44	0.22	4.6	6.5	0.038	W->100.0	0.080	0.0005<=1V	0.002<=W	0.16	1.26
63	Mink	Jan. 24	0.8 <t< td=""><td>5.50</td><td>1 18</td><td>1.00</td><td>0.77</td><td>18.6</td><td>0.8</td><td>0.002<rw< td=""><td>0.004<t< td=""><td>0.225</td><td>0.0005<=1V</td><td>T>#00.0</td><td>0.24</td><td>1.48</td></t<></td></rw<></td></t<>	5.50	1 18	1.00	0.77	18.6	0.8	0.002 <rw< td=""><td>0.004<t< td=""><td>0.225</td><td>0.0005<=1V</td><td>T>#00.0</td><td>0.24</td><td>1.48</td></t<></td></rw<>	0.004 <t< td=""><td>0.225</td><td>0.0005<=1V</td><td>T>#00.0</td><td>0.24</td><td>1.48</td></t<>	0.225	0.0005<=1V	T>#00.0	0.24	1.48
2	Moose	Feb. 2	0.4 <t< td=""><td>1.55</td><td>0 56</td><td>09:0</td><td>0.27</td><td>6.0</td><td>8.0</td><td>0.046</td><td>0.002<t< td=""><td>0.040</td><td>.0.0005<=W</td><td>0.002<=W</td><td>0.13</td><td>1.22</td></t<></td></t<>	1.55	0 56	09:0	0.27	6.0	8.0	0.046	0.002 <t< td=""><td>0.040</td><td>.0.0005<=W</td><td>0.002<=W</td><td>0.13</td><td>1.22</td></t<>	0.040	.0.0005<=W	0.002<=W	0.13	1.22
65	Muriel	Feb. 1	0.4 <t< td=""><td>230</td><td>0.68</td><td>99.0</td><td>62.0</td><td>8.4</td><td>10.0</td><td>0 032</td><td>0.002<t< td=""><td>0.155</td><td>0.0005<=W</td><td>0.002<=W</td><td>01.0</td><td>0.78</td></t<></td></t<>	230	0.68	99.0	62.0	8.4	10.0	0 032	0.002 <t< td=""><td>0.155</td><td>0.0005<=W</td><td>0.002<=W</td><td>01.0</td><td>0.78</td></t<>	0.155	0.0005<=W	0.002<=W	01.0	0.78
8	Muray	Feb. 2	0.4 <t< td=""><td>2.80</td><td>0.80</td><td>0.88</td><td>94.0</td><td>10.2</td><td>7.5</td><td>0.034</td><td>0.003<t< td=""><td>0.090</td><td>0.0005<=1V</td><td>0.004<t< td=""><td>030</td><td>1.28</td></t<></td></t<></td></t<>	2.80	0.80	0.88	94.0	10.2	7.5	0.034	0.003 <t< td=""><td>0.090</td><td>0.0005<=1V</td><td>0.004<t< td=""><td>030</td><td>1.28</td></t<></td></t<>	0.090	0.0005<=1V	0.004 <t< td=""><td>030</td><td>1.28</td></t<>	030	1.28
67	Nellie	Feb 2	0.4 <t< td=""><td>165</td><td>0.48</td><td>95.0</td><td>0.25</td><td>09</td><td>811</td><td>0 048</td><td>W=>100.0</td><td>0.205</td><td>W=>\$000.0</td><td>W=>200.0</td><td>0.12</td><td>0.42</td></t<>	165	0.48	95.0	0.25	09	811	0 048	W=>100.0	0.205	W=>\$000.0	W=>200.0	0.12	0.42
88	Noneay.	Jan 23	0.4 <t< td=""><td>1.75</td><td>09:0</td><td>0.64</td><td>0.31</td><td>8.9</td><td>8.5</td><td>820.0</td><td>0.001<-W</td><td>0.115</td><td>0.0005<=W</td><td>0.002<=W</td><td>91.0</td><td>1.60</td></t<>	1.75	09:0	0.64	0.31	8.9	8.5	820.0	0.001<-W	0.115	0.0005<=W	0.002<=W	91.0	1.60
69	08.4	Jan. 30	0.4 <t< td=""><td>2.05</td><td>0.62</td><td>15910</td><td>67.0</td><td>7.6</td><td>10.0</td><td>0.020</td><td>0.001<=₩</td><td>0.240</td><td>0.0005<≂W</td><td>V)=>20000</td><td>0.08<t< td=""><td>0.32</td></t<></td></t<>	2.05	0.62	15910	67.0	7.6	10.0	0.020	0.001<=₩	0.240	0.0005<≂W	V)=>20000	0.08 <t< td=""><td>0.32</td></t<>	0.32
		Feb 13	0.4 <t< td=""><td>2.10</td><td>09.0</td><td>89.0</td><td>0 30</td><td>7.6</td><td>10.5</td><td>0.038</td><td>0.001<=W</td><td>0.265</td><td>0.0010<t< td=""><td>ı</td><td>,</td><td>24.0</td></t<></td></t<>	2.10	09.0	89.0	0 30	7.6	10.5	0.038	0.001<=W	0.265	0.0010 <t< td=""><td>ı</td><td>,</td><td>24.0</td></t<>	ı	,	24.0
70	Partridge	Jan. 23	0.4 <t< td=""><td>2.40</td><td>0.72</td><td>0.72</td><td>0.32</td><td>0.6</td><td>10.0</td><td>0.042</td><td>0.001<</td><td>00:03</td><td>0.0005<=W</td><td>0.002<=W</td><td>0.20</td><td>14.0</td></t<>	2.40	0.72	0.72	0.32	0.6	10.0	0.042	0.001<	00:03	0.0005<=W	0.002<=W	0.20	14.0
11	Patten	Feb. 2	1>t-0	1.65	0.68	98.0	0.55	7.0	0.6	0114	0 003 <t< td=""><td>080'0</td><td>0.0005<=W</td><td>1>t000</td><td>0.32</td><td>2.24</td></t<>	080'0	0.0005<=W	1>t000	0.32	2.24
72	Pearl	Feb 1	04 <t< td=""><td>2.05</td><td>0 78</td><td>09'0</td><td>0.38</td><td>8.4</td><td>10.5</td><td>250 0</td><td>W->1000</td><td>090:0</td><td>0.0005<=tV</td><td>0.004<t< td=""><td>0.14</td><td>1.14</td></t<></td></t<>	2.05	0 78	09'0	0.38	8.4	10.5	250 0	W->1000	090:0	0.0005<=tV	0.004 <t< td=""><td>0.14</td><td>1.14</td></t<>	0.14	1.14
73	Peter	Feb. 12	0 4 <t< td=""><td>3.85</td><td>1:00</td><td>860</td><td>95.0</td><td>13.6</td><td>11.0</td><td>910:0</td><td>0.00I<-W</td><td>0.065</td><td>0.0005<=W</td><td>!</td><td> </td><td>09:0</td></t<>	3.85	1:00	860	95.0	13.6	11.0	910:0	0.00I<-W	0.065	0.0005<=W	!		09:0
7.4	Pike	Jan 23	0.8 <t< td=""><td>2 8 5</td><td>0.88</td><td>0.88</td><td>0.67</td><td>10.8</td><td>60</td><td>0.052</td><td>0.005</td><td>560'0</td><td>0.0005<=W</td><td>D:0006<t< td=""><td>97.0</td><td>1.24</td></t<></td></t<>	2 8 5	0.88	0.88	0.67	10.8	60	0.052	0.005	560'0	0.0005<=W	D:0006 <t< td=""><td>97.0</td><td>1.24</td></t<>	97.0	1.24
75	Proulx	Jan 23	0.4 <t< td=""><td>1.70</td><td>0.52</td><td>3.0</td><td>0.25</td><td>6.4</td><td>12.5</td><td>0.034</td><td>0 001<=1V</td><td>0.180</td><td>V=>\$000.0</td><td>0.002<=W</td><td>0.06<t< td=""><td>0.20</td></t<></td></t<>	1.70	0.52	3 .0	0.25	6.4	12.5	0.034	0 001<=1V	0.180	V=>\$000.0	0.002<=W	0.06 <t< td=""><td>0.20</td></t<>	0.20
76	Quartzile	Feb. 2	W=>50	1.30	0.38	94.0	0.22	89.7	8.0	0.022	0.002 <t< td=""><td>0.150</td><td>0.0005<=W</td><td>D:0004<t< td=""><td>0.14</td><td>0.48</td></t<></td></t<>	0.150	0.0005<=W	D:0004 <t< td=""><td>0.14</td><td>0.48</td></t<>	0.14	0.48
		Aug 27	0.2<: W	1.15	0.36	7.0	0.21	4.4	7.0	0.020	0 004 <t< td=""><td>0140</td><td>0.0005<=\V</td><td>0.002<=W</td><td>0.06<t< td=""><td>0.42</td></t<></td></t<>	0140	0.0005<=\V	0.002<=W	0.06 <t< td=""><td>0.42</td></t<>	0.42
11	Rocky.	Jan. 24	0.4 <t< td=""><td>4.70</td><td>ま.0</td><td>0.92</td><td>0.42</td><td>156</td><td>6.0</td><td>0.014</td><td>0 003<t< td=""><td>0.105</td><td>0.0005<=W</td><td>D:008<t< td=""><td>0.44</td><td>0.50</td></t<></td></t<></td></t<>	4.70	ま.0	0.92	0.42	156	6.0	0.014	0 003 <t< td=""><td>0.105</td><td>0.0005<=W</td><td>D:008<t< td=""><td>0.44</td><td>0.50</td></t<></td></t<>	0.105	0.0005<=W	D:008 <t< td=""><td>0.44</td><td>0.50</td></t<>	0.44	0.50
7.8	Roque	Feb. 2	0.4 <t< td=""><td>1.45</td><td>0.52</td><td>09:0</td><td>0 33</td><td>5.8</td><td>8.0</td><td>0.110</td><td>0.004<t< td=""><td>0.075</td><td>0.0005<=W</td><td>0.004<t< td=""><td>0.32</td><td>2.24</td></t<></td></t<></td></t<>	1.45	0.52	09:0	0 33	5.8	8.0	0.110	0.004 <t< td=""><td>0.075</td><td>0.0005<=W</td><td>0.004<t< td=""><td>0.32</td><td>2.24</td></t<></td></t<>	0.075	0.0005<=W	0.004 <t< td=""><td>0.32</td><td>2.24</td></t<>	0.32	2.24
۶	Round Otter	Jan. 24	0.6 <t< td=""><td>4.40</td><td>1.10</td><td>1.02</td><td>0.65</td><td>15.6</td><td>8.5</td><td>0.040</td><td>800.0</td><td>0.195</td><td>0.0005<=W</td><td>D-800.0</td><td>0.40</td><td>1.90</td></t<>	4.40	1.10	1.02	0.65	15.6	8.5	0.040	800.0	0.195	0.0005<=W	D-800.0	0.40	1.90
80	Ruth-Roy	Jan 23	0.4 <t< td=""><td>1.20</td><td>0.40</td><td>95.0</td><td>0.20</td><td>4.6</td><td>8.0</td><td>0.050</td><td>0.001<=W</td><td>0800</td><td>0.0005<=W</td><td>0.002<=W</td><td>0.10</td><td>0.82</td></t<>	1.20	0.40	95.0	0.20	4.6	8.0	0.050	0.001<=W	0800	0.0005<=W	0.002<=W	0.10	0.82

Table 3 (cont.). Concentrations in mg/L.

Number	Lake some	Date	Chloride	Calcium	Magnesium	Sodium	Potassium	Hardness	Sulphate	ammonia + ammonium	Nitrite	Nitrate +	Phosphate	Total Phosphorus	Total Nitrogen	Silicate
-	Swady	Jan 23	0.4 <t< th=""><th>1.75</th><th>09:0</th><th>0.68</th><th>0.32</th><th>7.0</th><th>8.5</th><th>0.038</th><th>0.002<t< th=""><th>0.105</th><th>0.0005<=1V</th><th>0.004<t< th=""><th>0.18</th><th>1.66</th></t<></th></t<></th></t<>	1.75	09:0	0.68	0.32	7.0	8.5	0.038	0.002 <t< th=""><th>0.105</th><th>0.0005<=1V</th><th>0.004<t< th=""><th>0.18</th><th>1.66</th></t<></th></t<>	0.105	0.0005<=1V	0.004 <t< th=""><th>0.18</th><th>1.66</th></t<>	0.18	1.66
2.8	Sealey's	Feb. 1	1.2	2.75	1.24	1,44	69:0	12.0	5.0	0.336	0.004 <t< td=""><td>0 020<t< td=""><td>0.0005<=W</td><td>0.022</td><td>96.0</td><td>1.64</td></t<></td></t<>	0 020 <t< td=""><td>0.0005<=W</td><td>0.022</td><td>96.0</td><td>1.64</td></t<>	0.0005<=W	0.022	96.0	1.64
83	Shigaug	Feb 2	0.4 <t< td=""><td>1.20</td><td>0.32</td><td>0.52</td><td>0.31</td><td>4.4</td><td>7.0</td><td>0.048</td><td>0.002<t< td=""><td>0.035</td><td>0.00005<=VV</td><td>0.004cT</td><td>0.18</td><td>0.92</td></t<></td></t<>	1.20	0.32	0.52	0.31	4.4	7.0	0.048	0.002 <t< td=""><td>0.035</td><td>0.00005<=VV</td><td>0.004cT</td><td>0.18</td><td>0.92</td></t<>	0.035	0.00005<=VV	0.004cT	0.18	0.92
2	Shingwak	Jun. 23	0.4 <t< td=""><td>1.40</td><td>0.40</td><td>0.44</td><td>0.23</td><td>5.2</td><td>8.5</td><td>0.040</td><td>0.001<=\tr\</td><td>0.150</td><td>0 0005<=W</td><td>0.002<≠W</td><td>D.08<t< td=""><td>0.44</td></t<></td></t<>	1.40	0.40	0.44	0.23	5.2	8.5	0.040	0.001<=\tr\	0.150	0 0005<=W	0.002<≠W	D.08 <t< td=""><td>0.44</td></t<>	0.44
88	Silver	Jan. 23	0.4 <t< td=""><td>1.25</td><td>0 36</td><td>0.46</td><td>62.0</td><td>4.6</td><td>7.0</td><td>0.156</td><td>0.001< W</td><td>0.115</td><td>0.0005<=W</td><td>0.006<t< td=""><td>D.34</td><td>1.38</td></t<></td></t<>	1.25	0 36	0.46	62.0	4.6	7.0	0.156	0.001< W	0.115	0.0005<=W	0.006 <t< td=""><td>D.34</td><td>1.38</td></t<>	D.34	1.38
98	Solomon	Feb. 2	0.8 <t< td=""><td>1.55</td><td>0.52</td><td>09:0</td><td>0.57</td><td>6.0</td><td>7.5</td><td>0.130</td><td>0.004<t< td=""><td>0.045</td><td>0.0005<=W</td><td>0.012</td><td>0.52</td><td>2.10</td></t<></td></t<>	1.55	0.52	09:0	0.57	6.0	7.5	0.130	0.004 <t< td=""><td>0.045</td><td>0.0005<=W</td><td>0.012</td><td>0.52</td><td>2.10</td></t<>	0.045	0.0005<=W	0.012	0.52	2.10
8.7	Spark	Feb. 2	0.4 <t< td=""><td>0.85</td><td>0.30</td><td>0.36</td><td>91.0</td><td>3.4</td><td>9:0</td><td>0.036</td><td>0.002<t< td=""><td>0.145</td><td>0.00005<=VV</td><td>T>400.0</td><td>0.12</td><td>0.30</td></t<></td></t<>	0.85	0.30	0.36	91.0	3.4	9:0	0.036	0.002 <t< td=""><td>0.145</td><td>0.00005<=VV</td><td>T>400.0</td><td>0.12</td><td>0.30</td></t<>	0.145	0.00005<=VV	T>400.0	0.12	0.30
88	Sugarbush	Feb. 2	0.4 <t< td=""><td>1.20</td><td>7.0</td><td>0.48</td><td>0.26</td><td>5.2</td><td>9.5</td><td>0.026</td><td>0.004<t< td=""><td>0.045</td><td>0.0005<=W</td><td>0.002<=W</td><td>0.18</td><td>3.</td></t<></td></t<>	1.20	7.0	0.48	0.26	5.2	9.5	0.026	0.004 <t< td=""><td>0.045</td><td>0.0005<=W</td><td>0.002<=W</td><td>0.18</td><td>3.</td></t<>	0.045	0.0005<=W	0.002<=W	0.18	3.
68	Театфор	Feb. 1	0.4 <t< td=""><td>1.85</td><td>06:00</td><td>0.58</td><td>0.35</td><td>8.2</td><td>7.0</td><td>0.024</td><td>0.001<±W</td><td>0.020cT</td><td>0.0005<=1V</td><td>0.006<t< td=""><td>0.12</td><td>09:0</td></t<></td></t<>	1.85	06:00	0.58	0.35	8.2	7.0	0.024	0.001<±W	0.020cT	0.0005<=1V	0.006 <t< td=""><td>0.12</td><td>09:0</td></t<>	0.12	09:0
		Feb. 9	0.4 <t< td=""><td>1.85</td><td>060</td><td>0.58</td><td>0.34</td><td>8.2</td><td>7.5</td><td>0.032</td><td>0 002<t< td=""><td>0.025</td><td>W=>\$000.0</td><td>1</td><td>1</td><td>09:0</td></t<></td></t<>	1.85	060	0.58	0.34	8.2	7.5	0.032	0 002 <t< td=""><td>0.025</td><td>W=>\$000.0</td><td>1</td><td>1</td><td>09:0</td></t<>	0.025	W=>\$000.0	1	1	09:0
06	Temy	Jan 30	0.4 <t< td=""><td>1.85</td><td>89 0</td><td>0.82</td><td>0.44</td><td>7.4</td><td>7.5</td><td>0.052</td><td>0.002<t< td=""><td>0.070</td><td>W=>2000.0</td><td>0.006<t< td=""><td>0.32</td><td>2.06</td></t<></td></t<></td></t<>	1.85	89 0	0.82	0.44	7.4	7.5	0.052	0.002 <t< td=""><td>0.070</td><td>W=>2000.0</td><td>0.006<t< td=""><td>0.32</td><td>2.06</td></t<></td></t<>	0.070	W=>2000.0	0.006 <t< td=""><td>0.32</td><td>2.06</td></t<>	0.32	2.06
16	The Three	Feb. 2	0.4 <t< td=""><td>13</td><td>0.48</td><td>0.48</td><td>0.28</td><td>5.2</td><td>9</td><td>0.168</td><td>0.003<t< td=""><td>0.055</td><td>0.0005<™V</td><td>D:0006<t< td=""><td>35.0</td><td>90:1</td></t<></td></t<></td></t<>	13	0.48	0.48	0.28	5.2	9	0.168	0.003 <t< td=""><td>0.055</td><td>0.0005<™V</td><td>D:0006<t< td=""><td>35.0</td><td>90:1</td></t<></td></t<>	0.055	0.0005<™V	D:0006 <t< td=""><td>35.0</td><td>90:1</td></t<>	35.0	90:1
		Feb. 9	0.4 <t< td=""><td>1.35</td><td>0.52</td><td>0.48</td><td>0.31</td><td>9.8</td><td>9</td><td>0.194</td><td>0.006</td><td>0.055</td><td>0.0005<=VV</td><td>1</td><td>ļ</td><td>1.14</td></t<>	1.35	0.52	0.48	0.31	9.8	9	0.194	0.006	0.055	0.0005<=VV	1	ļ	1.14
25	The Tri Lebra (North)	Aug 27	0.4 <t< td=""><td>3.75</td><td>1.02</td><td>6:0</td><td>0.38</td><td>13.6</td><td>6.5</td><td>810.0</td><td>900:0</td><td>0.010cT</td><td>0.0035</td><td>0.012</td><td>87.0</td><td>0.18</td></t<>	3.75	1.02	6:0	0.38	13.6	6.5	810.0	900:0	0.010cT	0.0035	0.012	8 7 .0	0.18
63	The Tri Leben (Southernt)	Aug. 27	0.4 <t< td=""><td>3.65</td><td>- 1</td><td>0.88</td><td>96 0</td><td>13.2</td><td>9</td><td>2100</td><td>0 00 0</td><td>0.005<=W</td><td>0.0005<¬₩</td><td>910:0</td><td>0.48</td><td>0.34</td></t<>	3.65	- 1	0.88	96 0	13.2	9	2100	0 00 0	0.005<=W	0.0005<¬₩	910:0	0.48	0.34
ま	The Tri Laber (Southerns)	Aug 27	0.4 <t< td=""><td>2.35</td><td>0.7</td><td>0.82</td><td>0.44</td><td>8.8</td><td>\$</td><td>0.004<t< td=""><td>0.002<t< td=""><td>0.005<=W</td><td>0.0015<t< td=""><td>0.016</td><td>98:0</td><td>0.2</td></t<></td></t<></td></t<></td></t<>	2.35	0.7	0.82	0.44	8.8	\$	0.004 <t< td=""><td>0.002<t< td=""><td>0.005<=W</td><td>0.0015<t< td=""><td>0.016</td><td>98:0</td><td>0.2</td></t<></td></t<></td></t<>	0.002 <t< td=""><td>0.005<=W</td><td>0.0015<t< td=""><td>0.016</td><td>98:0</td><td>0.2</td></t<></td></t<>	0.005<=W	0.0015 <t< td=""><td>0.016</td><td>98:0</td><td>0.2</td></t<>	0.016	98:0	0.2
8	Threenanows	Jan. 30	0.4 <t< td=""><td>1.95</td><td>0.84</td><td>0.84</td><td>0.39</td><td>8.2</td><td>8.5</td><td>0100</td><td>0.001<=W</td><td>0.095</td><td>0.0005<=W</td><td>41=>200'0</td><td>0.20</td><td>1.76</td></t<>	1.95	0.84	0.84	0.39	8.2	8.5	0100	0.001<=W	0.095	0.0005<=W	41=>200'0	0.20	1.76
88	Topaz	Feb. I	0.4 <t< td=""><td>04.0</td><td>0 443</td><td>0.48</td><td>0.31</td><td>5.4</td><td>9.5</td><td>0.020</td><td>0.001<=₩</td><td>0.110</td><td>0.0005<=VV</td><td>0.002<≠W</td><td>0.04<t< td=""><td>0.56</td></t<></td></t<>	04.0	0 443	0.48	0.31	5.4	9.5	0.020	0.001<=₩	0.110	0.0005<=VV	0.002<≠W	0.04 <t< td=""><td>0.56</td></t<>	0.56
26	Turbid	27 كالم	0.2<=1V	1.50	090	92.0	0.29	6.2	8.0	0 006 <t< td=""><td>0.002<t< td=""><td>0.005<=W</td><td>0.00005<=VV</td><td>L>9000</td><td>0.20</td><td>0.06<t< td=""></t<></td></t<></td></t<>	0.002 <t< td=""><td>0.005<=W</td><td>0.00005<=VV</td><td>L>9000</td><td>0.20</td><td>0.06<t< td=""></t<></td></t<>	0.005<=W	0.00005<=VV	L>9000	0.20	0.06 <t< td=""></t<>
88	Tunleback	Feb. 2	0.4 <t< td=""><td>1.70</td><td>0.52</td><td>0.74</td><td>0.31</td><td>6.4</td><td>8.5</td><td>0.050</td><td>0.003<t< td=""><td>0.045</td><td>0.0005<=W</td><td>0.002<=W</td><td>0.22</td><td>1.06</td></t<></td></t<>	1.70	0.52	0.74	0.31	6.4	8.5	0.050	0.003 <t< td=""><td>0.045</td><td>0.0005<=W</td><td>0.002<=W</td><td>0.22</td><td>1.06</td></t<>	0.045	0.0005<=W	0.002<=W	0.22	1.06
8:	Van	Feb. 2	0.4 <t< td=""><td>4.00</td><td>92.0</td><td>0.76</td><td>0.36</td><td>13.2</td><td>7.0</td><td>0.026</td><td>0.001<=W</td><td>0.265</td><td>0.0005<=W</td><td>0.008<t< td=""><td>0.32</td><td>0.78</td></t<></td></t<>	4.00	92.0	0.76	0.36	13.2	7.0	0.026	0.001<=W	0.265	0.0005<=W	0.00 8 <t< td=""><td>0.32</td><td>0.78</td></t<>	0.32	0.78
100	Van Winkle	Feb. 2	0.4 <t< td=""><td>2.95</td><td>0.72</td><td>0.74</td><td>0.34</td><td>10.4</td><td>7.5</td><td>0.040</td><td>0.003<t< td=""><td>0.040</td><td>0.0005<=VV</td><td>D.006<t< td=""><td>0.28</td><td>0.14</td></t<></td></t<></td></t<>	2.95	0.72	0.74	0.34	10.4	7.5	0.040	0.003 <t< td=""><td>0.040</td><td>0.0005<=VV</td><td>D.006<t< td=""><td>0.28</td><td>0.14</td></t<></td></t<>	0.040	0.0005<=VV	D.006 <t< td=""><td>0.28</td><td>0.14</td></t<>	0.28	0.14

Table 3 (cont.). Concentrations in mg/L.

Silicate	1.90	0.22	0.80	1.38	1.66	1.88	2.16	1.80	2.42	1.22	1.72	1.72	1.86	1.04	1.88	1.62	0.88	2.16	1.26	2.10	1.44	1.40	0.82
Total Nitrogen	0.84	L>200	0.32			ı	1	-	_					0.18	1	!	ŀ	1	l	ı	1 .	1	07:0
Total Phosphorus	0.024	0.002<=W	0.006 <t< th=""><th>1</th><th>1</th><th>ı</th><th>1</th><th>i</th><th>1</th><th>ı</th><th>ı</th><th>1</th><th>ı</th><th>0 002<=W</th><th>i</th><th>I</th><th>1</th><th>1</th><th>1</th><th>1</th><th>1</th><th>1</th><th>0.006<t< th=""></t<></th></t<>	1	1	ı	1	i	1	ı	ı	1	ı	0 002<=W	i	I	1	1	1	1	1	1	0.006 <t< th=""></t<>
Phosphate	0.0015 <t< td=""><td>0.0005<=\V</td><td>0.0005<=VV</td><td>0.0010<t< td=""><td>0.0010<t< td=""><td>0.002<t< td=""><td>0.0015<t< td=""><td>0.002<t< td=""><td>0.001<t< td=""><td>0.001<t< td=""><td>0.0005<=VV</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=VV</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.0005<=\V	0.0005<=VV	0.0010 <t< td=""><td>0.0010<t< td=""><td>0.002<t< td=""><td>0.0015<t< td=""><td>0.002<t< td=""><td>0.001<t< td=""><td>0.001<t< td=""><td>0.0005<=VV</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=VV</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.0010 <t< td=""><td>0.002<t< td=""><td>0.0015<t< td=""><td>0.002<t< td=""><td>0.001<t< td=""><td>0.001<t< td=""><td>0.0005<=VV</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=VV</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.002 <t< td=""><td>0.0015<t< td=""><td>0.002<t< td=""><td>0.001<t< td=""><td>0.001<t< td=""><td>0.0005<=VV</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=VV</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td></t<></td></t<></td></t<></td></t<></td></t<>	0.0015 <t< td=""><td>0.002<t< td=""><td>0.001<t< td=""><td>0.001<t< td=""><td>0.0005<=VV</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=VV</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td></t<></td></t<></td></t<></td></t<>	0.002 <t< td=""><td>0.001<t< td=""><td>0.001<t< td=""><td>0.0005<=VV</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=VV</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td></t<></td></t<></td></t<>	0.001 <t< td=""><td>0.001<t< td=""><td>0.0005<=VV</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=VV</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td></t<></td></t<>	0.001 <t< td=""><td>0.0005<=VV</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=VV</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td><td>0.0005<=W</td></t<>	0.0005<=VV	0.0005<=W	0.0005<=W	0.0005<=W	0.0005<=VV	0.0005<=W	0.0005<=W	0.0005<=W	0.0005<=W	0.0005<=W	0.0005<=W	0.0005<=W	0.0005<=W
Nitrate + nitrite	0.015 <t< td=""><td>091.0</td><td>060:0</td><td>0.080</td><td>090:0</td><td>0.040</td><td>0.020<t< td=""><td>0.035</td><td>0.040</td><td>0.025</td><td>0.075</td><td>0.050</td><td>0.105</td><td>0.055</td><td>0.015<t< td=""><td>0.140</td><td>0.075</td><td>0.105</td><td>0.080</td><td>0.015<t< td=""><td>0.025</td><td>0.095</td><td>0.025</td></t<></td></t<></td></t<></td></t<>	091.0	060:0	0.080	090:0	0.040	0.020 <t< td=""><td>0.035</td><td>0.040</td><td>0.025</td><td>0.075</td><td>0.050</td><td>0.105</td><td>0.055</td><td>0.015<t< td=""><td>0.140</td><td>0.075</td><td>0.105</td><td>0.080</td><td>0.015<t< td=""><td>0.025</td><td>0.095</td><td>0.025</td></t<></td></t<></td></t<>	0.035	0.040	0.025	0.075	0.050	0.105	0.055	0.015 <t< td=""><td>0.140</td><td>0.075</td><td>0.105</td><td>0.080</td><td>0.015<t< td=""><td>0.025</td><td>0.095</td><td>0.025</td></t<></td></t<>	0.140	0.075	0.105	0.080	0.015 <t< td=""><td>0.025</td><td>0.095</td><td>0.025</td></t<>	0.025	0.095	0.025
Nitrite	0 000	0.002 <t< td=""><td>1>M00.0</td><td>0.002<t< td=""><td>0.001<~W</td><td>2000</td><td>0.004<t< td=""><td>0.006</td><td>0.004<t< td=""><td>0.002<t< td=""><td>0.005</td><td>0.005</td><td>0.002<t< td=""><td>0.002<t< td=""><td>0.007</td><td>0.005</td><td>0.002</td><td>900'0</td><td>0.004<t< td=""><td>800.0</td><td>0.004<t< td=""><td>900'0</td><td>0.003<t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1>M00.0	0.002 <t< td=""><td>0.001<~W</td><td>2000</td><td>0.004<t< td=""><td>0.006</td><td>0.004<t< td=""><td>0.002<t< td=""><td>0.005</td><td>0.005</td><td>0.002<t< td=""><td>0.002<t< td=""><td>0.007</td><td>0.005</td><td>0.002</td><td>900'0</td><td>0.004<t< td=""><td>800.0</td><td>0.004<t< td=""><td>900'0</td><td>0.003<t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.001<~W	2000	0.004 <t< td=""><td>0.006</td><td>0.004<t< td=""><td>0.002<t< td=""><td>0.005</td><td>0.005</td><td>0.002<t< td=""><td>0.002<t< td=""><td>0.007</td><td>0.005</td><td>0.002</td><td>900'0</td><td>0.004<t< td=""><td>800.0</td><td>0.004<t< td=""><td>900'0</td><td>0.003<t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.006	0.004 <t< td=""><td>0.002<t< td=""><td>0.005</td><td>0.005</td><td>0.002<t< td=""><td>0.002<t< td=""><td>0.007</td><td>0.005</td><td>0.002</td><td>900'0</td><td>0.004<t< td=""><td>800.0</td><td>0.004<t< td=""><td>900'0</td><td>0.003<t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.002 <t< td=""><td>0.005</td><td>0.005</td><td>0.002<t< td=""><td>0.002<t< td=""><td>0.007</td><td>0.005</td><td>0.002</td><td>900'0</td><td>0.004<t< td=""><td>800.0</td><td>0.004<t< td=""><td>900'0</td><td>0.003<t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.005	0.005	0.002 <t< td=""><td>0.002<t< td=""><td>0.007</td><td>0.005</td><td>0.002</td><td>900'0</td><td>0.004<t< td=""><td>800.0</td><td>0.004<t< td=""><td>900'0</td><td>0.003<t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	0.002 <t< td=""><td>0.007</td><td>0.005</td><td>0.002</td><td>900'0</td><td>0.004<t< td=""><td>800.0</td><td>0.004<t< td=""><td>900'0</td><td>0.003<t< td=""></t<></td></t<></td></t<></td></t<>	0.007	0.005	0.002	900'0	0.004 <t< td=""><td>800.0</td><td>0.004<t< td=""><td>900'0</td><td>0.003<t< td=""></t<></td></t<></td></t<>	800.0	0.004 <t< td=""><td>900'0</td><td>0.003<t< td=""></t<></td></t<>	900'0	0.003 <t< td=""></t<>
ammonua + ammonum	0.264	0.034	0.014	0.116	0.112	0.110	0.154	0.222	0.314	0.082	0.104	0.216	0.108	0.032	0.148	0.152	0.078	0.258	0.052	0.272	0.068	0.164	0:030
Sulphate	9:0	11.5	9.0	7.5	10.0	4.5	4.5	3.5	6.5	6.0	7.5	7.0	7.5	7.0	7.0	8.5	7.5	6.5	6.5	5.5	5.5	6.5	5.5
Hardness	9.6	5.2	12.2	4 8	7.0	3.4	3.8	3.8	3.6	£.	2.8	3.2	4.6	4.2	3.2	6.2	5.0	3.6	3.0	2.4	2.2	4.4	4.0
Potassium	0.68	0.23	91-0	0.45	0.35	0.46	14.0	0.34	940	0.29	0.36	150	0.37	031	CF*:0	0.40	0.28	0.43	0.20	0.46	0.28	0.27	0.20
Sodium	1.08	0.46	1.08	090	0.74	0.40	0.40	0.44	0.44	0.48	0.44	0.44	0.52	0.48	0.48	1970	0.50	0.52	0 38	0.44	0.44	0.52	0.52
Magnesium	1.00	0.44	1.24	0.42	0.62	0.28	0:30	0.36	0.36	0.38	0.28	0:30	0,40	0.36	0.24	25.0	0.41	0.28	97.0	0.20	0.20	0.36	0.34
Calcium	2.15	1.35	2.85	1.20	1.80	06:0	1:00	0.90	0.85	1.05	990	08:0	1.20	1.05	06:0	1.65	1.25	1.00	0.75	09:0	0.55	1.20	1.00
Chloride	0.6 <t< td=""><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<t< td=""><td>0.4<t< td=""><td>0.6<t< td=""><td>0.6<t< td=""><td>0.6<t< td=""><td>0.8<t< td=""><td>0.4<t< td=""><td>0.4<⊤</td><td>0.8<Ţ</td><td>0.4<t< td=""><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<7</td><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<t< td=""><td>D.6<t< td=""><td>0.4<t< td=""><td>0.2<=W</td><td>0.2<=W</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.4 <t< td=""><td>0.6<t< td=""><td>0.4<t< td=""><td>0.4<t< td=""><td>0.6<t< td=""><td>0.6<t< td=""><td>0.6<t< td=""><td>0.8<t< td=""><td>0.4<t< td=""><td>0.4<⊤</td><td>0.8<Ţ</td><td>0.4<t< td=""><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<7</td><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<t< td=""><td>D.6<t< td=""><td>0.4<t< td=""><td>0.2<=W</td><td>0.2<=W</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.6 <t< td=""><td>0.4<t< td=""><td>0.4<t< td=""><td>0.6<t< td=""><td>0.6<t< td=""><td>0.6<t< td=""><td>0.8<t< td=""><td>0.4<t< td=""><td>0.4<⊤</td><td>0.8<Ţ</td><td>0.4<t< td=""><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<7</td><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<t< td=""><td>D.6<t< td=""><td>0.4<t< td=""><td>0.2<=W</td><td>0.2<=W</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.4 <t< td=""><td>0.4<t< td=""><td>0.6<t< td=""><td>0.6<t< td=""><td>0.6<t< td=""><td>0.8<t< td=""><td>0.4<t< td=""><td>0.4<⊤</td><td>0.8<Ţ</td><td>0.4<t< td=""><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<7</td><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<t< td=""><td>D.6<t< td=""><td>0.4<t< td=""><td>0.2<=W</td><td>0.2<=W</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.4 <t< td=""><td>0.6<t< td=""><td>0.6<t< td=""><td>0.6<t< td=""><td>0.8<t< td=""><td>0.4<t< td=""><td>0.4<⊤</td><td>0.8<Ţ</td><td>0.4<t< td=""><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<7</td><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<t< td=""><td>D.6<t< td=""><td>0.4<t< td=""><td>0.2<=W</td><td>0.2<=W</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.6 <t< td=""><td>0.6<t< td=""><td>0.6<t< td=""><td>0.8<t< td=""><td>0.4<t< td=""><td>0.4<⊤</td><td>0.8<Ţ</td><td>0.4<t< td=""><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<7</td><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<t< td=""><td>D.6<t< td=""><td>0.4<t< td=""><td>0.2<=W</td><td>0.2<=W</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.6 <t< td=""><td>0.6<t< td=""><td>0.8<t< td=""><td>0.4<t< td=""><td>0.4<⊤</td><td>0.8<Ţ</td><td>0.4<t< td=""><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<7</td><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<t< td=""><td>D.6<t< td=""><td>0.4<t< td=""><td>0.2<=W</td><td>0.2<=W</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.6 <t< td=""><td>0.8<t< td=""><td>0.4<t< td=""><td>0.4<⊤</td><td>0.8<Ţ</td><td>0.4<t< td=""><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<7</td><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<t< td=""><td>D.6<t< td=""><td>0.4<t< td=""><td>0.2<=W</td><td>0.2<=W</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.8 <t< td=""><td>0.4<t< td=""><td>0.4<⊤</td><td>0.8<Ţ</td><td>0.4<t< td=""><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<7</td><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<t< td=""><td>D.6<t< td=""><td>0.4<t< td=""><td>0.2<=W</td><td>0.2<=W</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.4 <t< td=""><td>0.4<⊤</td><td>0.8<Ţ</td><td>0.4<t< td=""><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<7</td><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<t< td=""><td>D.6<t< td=""><td>0.4<t< td=""><td>0.2<=W</td><td>0.2<=W</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.4<⊤	0.8<Ţ	0.4 <t< td=""><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<7</td><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<t< td=""><td>D.6<t< td=""><td>0.4<t< td=""><td>0.2<=W</td><td>0.2<=W</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.4 <t< td=""><td>0.6<t< td=""><td>0.4<7</td><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<t< td=""><td>D.6<t< td=""><td>0.4<t< td=""><td>0.2<=W</td><td>0.2<=W</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.6 <t< td=""><td>0.4<7</td><td>0.4<t< td=""><td>0.6<t< td=""><td>0.4<t< td=""><td>D.6<t< td=""><td>0.4<t< td=""><td>0.2<=W</td><td>0.2<=W</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.4<7	0.4 <t< td=""><td>0.6<t< td=""><td>0.4<t< td=""><td>D.6<t< td=""><td>0.4<t< td=""><td>0.2<=W</td><td>0.2<=W</td></t<></td></t<></td></t<></td></t<></td></t<>	0.6 <t< td=""><td>0.4<t< td=""><td>D.6<t< td=""><td>0.4<t< td=""><td>0.2<=W</td><td>0.2<=W</td></t<></td></t<></td></t<></td></t<>	0.4 <t< td=""><td>D.6<t< td=""><td>0.4<t< td=""><td>0.2<=W</td><td>0.2<=W</td></t<></td></t<></td></t<>	D.6 <t< td=""><td>0.4<t< td=""><td>0.2<=W</td><td>0.2<=W</td></t<></td></t<>	0.4 <t< td=""><td>0.2<=W</td><td>0.2<=W</td></t<>	0.2<=W	0.2<=W
Date	Jen. 30	Jan 23	Feb. 2	Feb. 12	Feb. 12	Fcb. 12	Feb. 12	Feb. 12	Feb. 12	Feb. 12	Fcb. 9	Fcb. 9	Feb. 9	Aug. 27	Fcb. 9	Feb. 9	Feb. 9	Feb. 9	Feb. 9	Feb. 9	Feb. 9	Feb.9	Aug. 27
Lake name	Wagon Road	Whiskeyjack	York	#3	144	115	я6	#7	BF9	#12	#17	81 <i>w</i>	61#		#20	121	#22	1123	#24	#25	W26	K27	
Number	101	102	103	±01	105	106	107	108	109	110	111	112	113		114	115	116	117	118	119	120	121	

Table 3 (cont.). Concentrations in mg/L.

Number	Lake name	Be	Chloride	Calcium	Magnesium	Sodium	Potessium	Hardness	Sulphate	arramoniua + arramonium	Nitrite	Nitrate + nitrite	Phosphate	Total Phosphorus	Total Nitrogen	Silicate
122	#28	Feb. 9	0.2<+W	1.10	0.30	0.50	0.29	4.0	6.5	0.108	0.003 <t< th=""><th>0.070</th><th>0.0005<=\V</th><th>1</th><th>i</th><th>0.70</th></t<>	0.070	0.0005<=\V	1	i	0.70
		Aug. 27	0.2<=W	1.05	0.28	0.48	0.29	3.8	6.0	0.118	0.002 <t< td=""><td>0.025</td><td>0.0005<=W</td><td>0.008<t< td=""><td>0.38</td><td>0.30</td></t<></td></t<>	0.025	0.0005<=W	0.008 <t< td=""><td>0.38</td><td>0.30</td></t<>	0.38	0.30
123	629	Feb. 9	0.2<=!W	06:0	0.20	0.32	0.20	3.2	7.5	0.104	0.003 <t< td=""><td>0.085</td><td>0.0005<"W</td><td>1</td><td>,</td><td>0.14</td></t<>	0.085	0.0005<"W	1	,	0.14
		Aug. 27	0.4 <t< td=""><td>0.85</td><td>0.20</td><td>0.28</td><td>0.17</td><td>60</td><td>7.0</td><td>0.020</td><td>V1->1000</td><td>\$\$0:0</td><td>0.001<⊤</td><td>T>\$100.0</td><td>01.0</td><td>0.04<t< td=""></t<></td></t<>	0.85	0.20	0.28	0.17	60	7.0	0.020	V1->1000	\$\$0:0	0.001<⊤	T>\$100.0	01.0	0.04 <t< td=""></t<>
124	#30	Feb. 9	0.4 <t< td=""><td>1.15</td><td>0.36</td><td>0.52</td><td>92 0</td><td>4.2</td><td>7.0</td><td>9200</td><td>D.004<t< td=""><td>0.245</td><td>0.0005<=1V</td><td>-</td><td>1</td><td>27.</td></t<></td></t<>	1.15	0.36	0.52	92 0	4.2	7.0	9200	D.004 <t< td=""><td>0.245</td><td>0.0005<=1V</td><td>-</td><td>1</td><td>27.</td></t<>	0.245	0.0005<=1V	-	1	27.
		Aug. 27	0.2<-vV	06'0	0.32	0.48	91.0	3.6	5.5	0.014	0.002 <t< td=""><td>W=>200.0</td><td>0.0005<=W</td><td>0.006cT</td><td>0.14</td><td>90:0</td></t<>	W=>200.0	0.0005<=W	0.006cT	0.14	90:0
125	#33	Feb. 12	0.4 <t< td=""><td>1.60</td><td>91-0</td><td>09:0</td><td>0.28</td><td>5.8</td><td>8.5</td><td>0.062</td><td>W>100.0</td><td>060:0</td><td>0.0015<t< td=""><td> </td><td>1</td><td>2.38</td></t<></td></t<>	1.60	91-0	09:0	0.28	5.8	8.5	0.062	W>100.0	060:0	0.0015 <t< td=""><td> </td><td>1</td><td>2.38</td></t<>		1	2.38
971	#35	Feb. 9	0.4 <t< td=""><td>0.75</td><td>0.30</td><td>0.40</td><td>0.22</td><td>3.2</td><td>7.5</td><td>0.038</td><td>0.002<t< td=""><td>0.045</td><td>0.0005<≂W</td><td>1</td><td>:</td><td>50%</td></t<></td></t<>	0.75	0.30	0.40	0.22	3.2	7.5	0.038	0.002 <t< td=""><td>0.045</td><td>0.0005<≂W</td><td>1</td><td>:</td><td>50%</td></t<>	0.045	0.0005<≂W	1	:	50%
127	\$. \$	Feb. 9	0.4 <t< td=""><td>2.65</td><td>1 30</td><td>1.04</td><td>05.0</td><td>12.0</td><td>11.0</td><td>869:0</td><td>0.007</td><td>0.075</td><td>0.0005<=W</td><td>,</td><td>1</td><td>2.26</td></t<>	2.65	1 30	1.04	05.0	12.0	11.0	869:0	0.007	0.075	0.0005<=W	,	1	2.26
128	#37A	Feb. 9	0.4 <t< td=""><td>2.50</td><td>1.08</td><td>86:0</td><td>0.39</td><td>10.8</td><td>8.5</td><td>0.050</td><td>0.005</td><td>0.090</td><td>VJ=>\$000.0</td><td>1</td><td>,</td><td>09'0</td></t<>	2.50	1.08	86:0	0.39	10.8	8.5	0.050	0.005	0.090	VJ=>\$000.0	1	,	09'0
65	#38	Feb. 9	0.4 <t< td=""><td>1.60</td><td>09:0</td><td>0 72</td><td>0.35</td><td>6.4</td><td>8.5</td><td>0.120</td><td>0.005</td><td>090.0</td><td>0.0005<=W</td><td>ı</td><td>1</td><td>3.62</td></t<>	1.60	09:0	0 72	0.35	6.4	8.5	0.120	0.005	090.0	0.0005<=W	ı	1	3.62
130	07'4	Feb. 13	0.2 <t< td=""><td>1.45</td><td>0.44</td><td>0.52</td><td>0.26</td><td>5.4</td><td>8.0</td><td>0.054</td><td>0.001<-W</td><td>0.040</td><td>0.001<t< td=""><td>1</td><td>,</td><td>86:0</td></t<></td></t<>	1.45	0.44	0.52	0.26	5.4	8.0	0.054	0.001<-W	0.040	0.001 <t< td=""><td>1</td><td>,</td><td>86:0</td></t<>	1	,	86:0
131	845	Feb. 13	0.8 <t< td=""><td>2.45</td><td>084</td><td>76:0</td><td>0.39</td><td>9.6</td><td>7.0</td><td>0.134</td><td>600'0</td><td>090:0</td><td>0.0110</td><td>I</td><td>1</td><td>3.04</td></t<>	2.45	084	76:0	0.39	9.6	7.0	0.134	600'0	090:0	0.0110	I	1	3.04
132	954	Feb. 13	0.4 <t< td=""><td>2.55</td><td>0.76</td><td>0.72</td><td>15.0</td><td>94</td><td>0.9</td><td>0.102</td><td>900.0</td><td>0.150</td><td>0.000.0</td><td> </td><td>1</td><td>2.16</td></t<>	2.55	0.76	0.72	15.0	94	0.9	0.102	900.0	0.150	0.000.0		1	2.16
133	#\$0	Feb. 12	0.4 <t< td=""><td>0.95</td><td>0.40</td><td>0.48</td><td>0.32</td><td>4.0</td><td>9.0</td><td>911.0</td><td>0.002<t< td=""><td>0.050</td><td>0.0010<t< td=""><td>1</td><td>i</td><td>1.62</td></t<></td></t<></td></t<>	0.95	0.40	0.48	0.32	4.0	9.0	911.0	0.002 <t< td=""><td>0.050</td><td>0.0010<t< td=""><td>1</td><td>i</td><td>1.62</td></t<></td></t<>	0.050	0.0010 <t< td=""><td>1</td><td>i</td><td>1.62</td></t<>	1	i	1.62
<u> </u>	#51	Feb. 12	0.4 <t< td=""><td>1.20</td><td>0.40</td><td>91-0</td><td>0.26</td><td>9.5</td><td>8.5</td><td>0.078</td><td>0.002<t< td=""><td>090'0</td><td>0.0015<t< td=""><td>1</td><td></td><td>1.20</td></t<></td></t<></td></t<>	1.20	0.40	91-0	0.26	9.5	8.5	0.078	0.002 <t< td=""><td>090'0</td><td>0.0015<t< td=""><td>1</td><td></td><td>1.20</td></t<></td></t<>	090'0	0.0015 <t< td=""><td>1</td><td></td><td>1.20</td></t<>	1		1.20
135	#52	Feb. 12	0.2<=W	0.75	0.20	96.0	61.0	90 F1	7.0	050:0	D.002 <t< td=""><td>0.050</td><td>0.0015<t< td=""><td>ı</td><td>ı</td><td>96.0</td></t<></td></t<>	0.050	0.0015 <t< td=""><td>ı</td><td>ı</td><td>96.0</td></t<>	ı	ı	96.0
98	#53	Feb. 12	0.4 <t< td=""><td>0.70</td><td>0.20</td><td>960</td><td>0.30</td><td>2.6</td><td>0.9</td><td>0.182</td><td>0.003<t< td=""><td>0.045</td><td>D.0010cT</td><td>1</td><td>,</td><td>84.</td></t<></td></t<>	0.70	0.20	960	0.30	2.6	0.9	0.182	0.003 <t< td=""><td>0.045</td><td>D.0010cT</td><td>1</td><td>,</td><td>84.</td></t<>	0.045	D.0010cT	1	,	84.
137	13,51	Feb. 12	0.2<=W	1.25	0.32	0.40	910	4.4	8.0	0 0 74	0.003 <t< td=""><td>0.145</td><td>D.0015<t< td=""><td>i</td><td>,</td><td>0.52</td></t<></td></t<>	0.145	D.0015 <t< td=""><td>i</td><td>,</td><td>0.52</td></t<>	i	,	0.52
138	#55	Feb. 12	0.2<=W	1.15	0.32	0.40	0.18	4.0	6.0	0.070	W=>100.0	0.070	0.0015 <t< td=""><td>1</td><td>1</td><td>0.86</td></t<>	1	1	0.86
139	11.59	Feb. 12	0.4 <t< td=""><td>2.95</td><td>1.64</td><td>1.20</td><td>89.0</td><td>14.2</td><td>9.5</td><td>010.0</td><td>0.001<=W</td><td>0.135</td><td>0.0015<t< td=""><td>i</td><td> </td><td>8.</td></t<></td></t<>	2.95	1.64	1.20	89.0	14.2	9.5	010.0	0.001<=W	0.135	0.0015 <t< td=""><td>i</td><td> </td><td>8.</td></t<>	i		8.
140	#64	Feb. 9	0.4 <t< td=""><td>1.45</td><td>95.0</td><td>0.84</td><td>0.38</td><td>6.0</td><td>7.0</td><td>0.168</td><td>D.0004CT</td><td>0.165</td><td>0.0005<=W</td><td>1</td><td>,</td><td>2.24</td></t<>	1.45	95.0	0.84	0.38	6.0	7.0	0.168	D.0004CT	0.165	0.0005<=W	1	,	2.24

Table 3 (cont.). Concentrations in mg/L.

Number	Lake Dame	Date	Chloride	Calcium	Magnesium	Sodium	Potessium	Hardness	Sulphate	Ammonia + Ammonium	Nitrite	Nitrate +	Phosphate	Total Phosphorus	Total Nitrogen	Silicate
141	II65	Feb. 9	0.4 <t< td=""><td>1.00</td><td>0.40</td><td>0.40</td><td>0.22</td><td>4.2</td><td>5.0</td><td>0.330</td><td>0.003<t< td=""><td>0.070</td><td>0.0005<=W</td><td>1</td><td>į</td><td>1.04</td></t<></td></t<>	1.00	0.40	0.40	0.22	4.2	5.0	0.330	0.003 <t< td=""><td>0.070</td><td>0.0005<=W</td><td>1</td><td>į</td><td>1.04</td></t<>	0.070	0.0005<=W	1	į	1.04
142	99#	Feb. 9	0.4 <t< td=""><td>06:0</td><td>0.36</td><td>0.36</td><td>019</td><td>3.8</td><td>5.0</td><td>0.168</td><td>0.004<t< td=""><td>0.050</td><td>0.0005<*W</td><td></td><td>1</td><td>0.70</td></t<></td></t<>	06:0	0.36	0.36	019	3.8	5.0	0.168	0.004 <t< td=""><td>0.050</td><td>0.0005<*W</td><td></td><td>1</td><td>0.70</td></t<>	0.050	0.0005<*W		1	0.70
143	89₩	Feb. 9	0.4 <t< td=""><td>1.55</td><td>0.52</td><td>0.52</td><td>0.23</td><td>6.0</td><td>7.5</td><td>0.012</td><td>0.003<t< td=""><td>0015<t< td=""><td>V->\$000.0</td><td>_</td><td>1</td><td>1.80</td></t<></td></t<></td></t<>	1.55	0.52	0.52	0.23	6.0	7.5	0.012	0.003 <t< td=""><td>0015<t< td=""><td>V->\$000.0</td><td>_</td><td>1</td><td>1.80</td></t<></td></t<>	0015 <t< td=""><td>V->\$000.0</td><td>_</td><td>1</td><td>1.80</td></t<>	V->\$000.0	_	1	1.80
14.1	69ш	Feb. 9	0.4 <t< td=""><td>1.35</td><td>0.48</td><td>0.52</td><td>0.27</td><td>5.5</td><td>7.0</td><td>0 092</td><td>0.004<t< td=""><td>0.115</td><td>0.0005<=VV</td><td>ï</td><td>1</td><td>1.50</td></t<></td></t<>	1.35	0.48	0.52	0.27	5.5	7.0	0 092	0.004 <t< td=""><td>0.115</td><td>0.0005<=VV</td><td>ï</td><td>1</td><td>1.50</td></t<>	0.115	0.0005<=VV	ï	1	1.50
145	174	Feb. 9	1>90	1.65	890	0.54	0.35	7.0	8.0	0.220	9000	0.030	0.0005<-W		-	2.34
146	#73	Feb. 12	0.8 <t< td=""><td>8.45</td><td>266</td><td>1.68</td><td>1 05</td><td>32.0</td><td>10.5</td><td>910.0</td><td>0.007</td><td>0.245</td><td>0.0110</td><td></td><td>!</td><td>3.58</td></t<>	8.45	266	1.68	1 05	32.0	10.5	910.0	0.007	0.245	0.0110		!	3.58
147	H74	Feb. 12	0.8 <t< td=""><td>3.15</td><td>1 32</td><td>1 08</td><td>0.45</td><td>13.2</td><td>6.5</td><td>0.012</td><td>0.004<t< td=""><td>0.180</td><td>0.0025</td><td></td><td>ŀ</td><td>88.</td></t<></td></t<>	3.15	1 32	1 08	0.45	13.2	6.5	0.012	0.004 <t< td=""><td>0.180</td><td>0.0025</td><td></td><td>ŀ</td><td>88.</td></t<>	0.180	0.0025		ŀ	88.
148	#76	Feb. 12	0.4 <t< td=""><td>14.2</td><td>3.84</td><td>01.1</td><td>0.82</td><td>512</td><td>7.5</td><td>0.124</td><td>0.006</td><td>0.225</td><td>0.0025</td><td>- ,</td><td>ì</td><td>3.</td></t<>	14.2	3.84	0 1 .1	0.82	512	7.5	0.124	0.006	0.225	0.0025	- ,	ì	3.
149	67.н	Feb. 9	0.8 <t< td=""><td>080</td><td>0.20</td><td>0.44</td><td>0.37</td><td>2.8</td><td>4.5</td><td>0.416</td><td>0 0 0 0</td><td>0.015<t< td=""><td>0.0005<=\text{V}</td><td></td><td>:</td><td>1.96</td></t<></td></t<>	080	0.20	0.44	0.37	2.8	4.5	0.416	0 0 0 0	0.015 <t< td=""><td>0.0005<=\text{V}</td><td></td><td>:</td><td>1.96</td></t<>	0.0005<=\text{V}		:	1.96
1\$0	#80	Feb 9	0.4 <t< td=""><td>1.70</td><td>0.48</td><td>89.0</td><td>0.40</td><td>6.2</td><td>8.0</td><td>0.142</td><td>0.005</td><td>0.150</td><td>0.0005<=W</td><td>1</td><td>!</td><td>1.52</td></t<>	1.70	0.48	89.0	0.40	6.2	8.0	0.142	0.005	0.150	0.0005<=W	1	!	1.52
151	#82	Feb. 13	0.4 <t< td=""><td>1.15</td><td>0.48</td><td>09'0</td><td>0.37</td><td>8.5</td><td>0.6</td><td>990.0</td><td>0 001< W</td><td>0.110</td><td>0.0010<t< td=""><td></td><td>1</td><td>3.36</td></t<></td></t<>	1.15	0.48	09'0	0.37	8.5	0.6	990.0	0 001< W	0.110	0.0010 <t< td=""><td></td><td>1</td><td>3.36</td></t<>		1	3.36

Table 4. Concentrations in ug/L. Method: ** = ICP-AES; blank = ICP-MS,

Name	Date	Method	₹	₽₽	æ	3	ర	3	₿	Fe	£	Μ'n	Wo	Σ	Sr	ŢĬ	>	57
Jan. 30	اه		205	18.7	£	£	Æ	2.51	ND ND	78.3	3.17	165	QN	5.72	78.7	£	Ð	16.8
Jan. 23	n	:	250	21	0,1<=₩	0.3 <t< th=""><th>0.4<t< th=""><th>2.2</th><th>1.6</th><th>\$\$</th><th>VI=>\$</th><th>081</th><th>0.2<=W</th><th>=</th><th>I&T</th><th>N=>1</th><th>0.2<=\V</th><th>91</th></t<></th></t<>	0.4 <t< th=""><th>2.2</th><th>1.6</th><th>\$\$</th><th>VI=>\$</th><th>081</th><th>0.2<=W</th><th>=</th><th>I&T</th><th>N=>1</th><th>0.2<=\V</th><th>91</th></t<>	2.2	1.6	\$\$	VI=>\$	081	0.2<=W	=	I&T	N=>1	0.2<=\V	91
Feb. 1	-		42	14.8	Q.	Ę	£	ĘŽ.	Q.	Ę.	1.44	21.4	Ð	3.43	12.4	£	Ð	8.38
Jan. 23	22	:	ž	٥	0.1<=\\v.	0.2 <t< th=""><th>0.4<t< th=""><th>0.4<t< th=""><th>2.6</th><th>180</th><th>W=>\$</th><th>26</th><th>0.2<ww< th=""><th>6.5</th><th>14<t< th=""><th>W=>I</th><th>0.2<=W</th><th>3.5</th></t<></th></ww<></th></t<></th></t<></th></t<>	0.4 <t< th=""><th>0.4<t< th=""><th>2.6</th><th>180</th><th>W=>\$</th><th>26</th><th>0.2<ww< th=""><th>6.5</th><th>14<t< th=""><th>W=>I</th><th>0.2<=W</th><th>3.5</th></t<></th></ww<></th></t<></th></t<>	0.4 <t< th=""><th>2.6</th><th>180</th><th>W=>\$</th><th>26</th><th>0.2<ww< th=""><th>6.5</th><th>14<t< th=""><th>W=>I</th><th>0.2<=W</th><th>3.5</th></t<></th></ww<></th></t<>	2.6	180	W=>\$	26	0.2 <ww< th=""><th>6.5</th><th>14<t< th=""><th>W=>I</th><th>0.2<=W</th><th>3.5</th></t<></th></ww<>	6.5	14 <t< th=""><th>W=>I</th><th>0.2<=W</th><th>3.5</th></t<>	W=>I	0.2<=W	3.5
Feb. 2	-61		1 .	8 38	£	QN.	ON.	£	Æ	295	QN	38	Ð	3.2	13.4	2.21	£	2.54
Jan	Jan 23	:	T≫8	12	W->1.0	0.3<⊤	0.4 <t< th=""><th>0.4<t< th=""><th>26</th><th>140</th><th>\$<=\U</th><th>3.</th><th>0.2<=W</th><th>8.5</th><th>14<t< th=""><th>M=>I</th><th>0.2<=W</th><th>\$3</th></t<></th></t<></th></t<>	0.4 <t< th=""><th>26</th><th>140</th><th>\$<=\U</th><th>3.</th><th>0.2<=W</th><th>8.5</th><th>14<t< th=""><th>M=>I</th><th>0.2<=W</th><th>\$3</th></t<></th></t<>	26	140	\$<=\U	3.	0.2<=W	8.5	14 <t< th=""><th>M=>I</th><th>0.2<=W</th><th>\$3</th></t<>	M=>I	0.2<=W	\$3
7	Aug 27	:	TX	9	0.1 <w< td=""><td>0.2<⊤</td><td>0.2<- W</td><td>0.2< -W</td><td>2</td><td>20< W</td><td>V->\$</td><td>8.5</td><td>0.2<=W</td><td>3.5</td><td>16<7</td><td>V1=>1</td><td>0.2<≃V</td><td>1.04</td></w<>	0.2<⊤	0.2<- W	0.2< -W	2	20< W	V->\$	8.5	0.2<=W	3.5	16<7	V1=>1	0.2<≃V	1.04
₹	Aug 27	:	210	24	0.1<=W	0.3<⊤	0.2<-W	1	3	0+1	M->\$	110	0.2<=W	50	18 <t< td=""><td>V1~>I</td><td>0.4<t< td=""><td>8</td></t<></td></t<>	V1~>I	0.4 <t< td=""><td>8</td></t<>	8
F.	Feb. 1		434	11.3	Q	N DR	Q.	٢.	ND	QN	1 22	603	Ð	8.53	5.03	£	Ð	16.2
품	Feb. 7		403	12.3	Ð	ND	£	£	ND DS	112	786	37.7	Ð	3.29	19.9	£	Ð	4.91
۳,	Feb. 2		128	15.6	£	ON	ON.	Q.	ND	66.3	Q.	36.5	Ð	8.16	18.6	Ð	Ð	13.3
-≅	Jan 23	:	370	91	0.1<-W	0.3<⊤	0.2<=W	3.2	18	60×T	A1->\$	100	0.2<=W	13	I&T	V->I	0 2<=W	91
ı.	Feb. 2		185	20.1	Ð	Ę.	Ð	2 08	Æ	141	14.1	141	QN	5.23	8.77	Ð	£	16.9
<u>" </u>	Feb. 2		113	=	Ð	£	£	ND	Æ	9446	6.2	49.5	Ð	2.62	7.72	3.29	£	5.27
Ŀ	Feb. 1		7.4	15.2	Ð	- OZ	£	ND.	£	936	16.9	. 13	£	5.38	1.61	2.56	£	10.4
<u>ٿ</u>	Feb. 2		493	27.9	£	ND	ĘĘ.	5.4	£	QN	3.72	210	Q	6:01	11.3	Ą	£	23.5
Ľ.	Feb. 2		N.	9.48	£	N	ON	Q.	ND	73.5	30.4	32.4	Ð	2.07	15.7	Ð	Ð	3.4
ı,	Feb. 1		621	22.2	£	S.	ON.	1.43	ND DA	121	1.15	118	QN	4.68	13.3	2.45	£	15.7
-3	Jan. 23	•	260	16	0.1<=\tr\	0.2 <t< td=""><td>0.6KT</td><td>5.6</td><td>2.2</td><td>280</td><td>\$< W</td><td>76</td><td>0.2<=W</td><td>14</td><td>10<</td><td>V=>I</td><td>0.4<t< td=""><td>12</td></t<></td></t<>	0.6KT	5.6	2.2	280	\$< W	76	0.2<=W	14	10<	V=>I	0.4 <t< td=""><td>12</td></t<>	12
-7]	Jan 30		270	18.6	£	Ę.	£	2.26	£	310	1.7	85.9	QN.	14.8	13.1	2.53	£	13.1
4	Jan. 23	:	230	4	0.1<=\t	0.3<⊤	0.2<=1V	T T	1,4	40 <t< td=""><td>\\=>\$</td><td>120</td><td>0.2<=W</td><td>12</td><td>₹</td><td>N=>1</td><td>0.2<=W</td><td>13</td></t<>	\\=>\$	120	0.2<=W	12	₹	N=>1	0.2<=W	13
<u>"</u>	Feb. 1		87.8	12.7	Ð	Ð	£	QN QN	£	809	7.76	141	QN	2	18.2	2.99	Æ	3.49
Ψ.	Feb. 2		104	7.72	£	ВÐ	Œ	1.08	Ð	148	4.74	62.1	Q.	2.92	15.7	Ð	Ð	6.64
4																		1

Table 4 (cont.). Concentrations in ug/L. Method: ** = ICP-AES; blank = ICP-MS

Number	Name	Date	Method	A	æ	Be	2	Ŋ	රි	Cu.	ᅫ	£	λſn	Mo	ž	Š	Ī	>	5
23	Crater W.	Feb. 9		801	9.42	Ð	£	Q.	Æ	Æ	381	Ð	47.3	Ą	2.48	4.97	2.43	£	6.32
7.7	Cuckoo	Aug 27	:	V∕01	5	0.1<-W	0.2 <t< th=""><th>0.2< .W</th><th>W=>₹.0</th><th>2.4</th><th>20<=W</th><th>8<=W</th><th>90</th><th>0.2<⇒W</th><th>2.5<⊤</th><th>12<t< th=""><th>1<=\V</th><th>0.2<=W</th><th>10</th></t<></th></t<>	0.2< .W	W=>₹.0	2.4	20<=W	8<=W	90	0.2<⇒W	2.5<⊤	12 <t< th=""><th>1<=\V</th><th>0.2<=W</th><th>10</th></t<>	1<=\V	0.2<=W	10
22	David	Fcb. 2		115	2	Ð	Ð	£	1.33	£	Æ	0.944	108	ON.	11.5	10.8	ND	Q.	11.6
92	Deacon	Jan. 23	:	80 <t< th=""><th>11</th><th>W >1.0</th><th>0.1<-W</th><th>0.4<t< th=""><th>0.4<t< th=""><th>4.0</th><th>80<t< th=""><th>N->\$</th><th>38</th><th>0.2<=W</th><th>8.0</th><th>16<t< th=""><th>M∞>l</th><th>0.2<=\V</th><th>6.5</th></t<></th></t<></th></t<></th></t<></th></t<>	11	W >1.0	0.1<-W	0.4 <t< th=""><th>0.4<t< th=""><th>4.0</th><th>80<t< th=""><th>N->\$</th><th>38</th><th>0.2<=W</th><th>8.0</th><th>16<t< th=""><th>M∞>l</th><th>0.2<=\V</th><th>6.5</th></t<></th></t<></th></t<></th></t<>	0.4 <t< th=""><th>4.0</th><th>80<t< th=""><th>N->\$</th><th>38</th><th>0.2<=W</th><th>8.0</th><th>16<t< th=""><th>M∞>l</th><th>0.2<=\V</th><th>6.5</th></t<></th></t<></th></t<>	4.0	80 <t< th=""><th>N->\$</th><th>38</th><th>0.2<=W</th><th>8.0</th><th>16<t< th=""><th>M∞>l</th><th>0.2<=\V</th><th>6.5</th></t<></th></t<>	N->\$	38	0.2<=W	8.0	16 <t< th=""><th>M∞>l</th><th>0.2<=\V</th><th>6.5</th></t<>	M∞>l	0.2<=\V	6.5
27	de Lamor	Feb. 2		281	20.7	£	Ð	Ð	3.43	£	214	21.9	158	ON.	6.29	8.44	ND	Ð	22.1
		Feb. 9		308	24.2	Ð	S	£	3.24	£	206	67.9	168	Ð	5.76	9.95	2.25	N _O	25.5
58	East How.	Aug 27	:	ΣŽ	9	0.1<-W	0.2 <t< th=""><th>0.2<-1</th><th>0.2<- W</th><th>2.6</th><th>20<=1V</th><th>S<=1V</th><th>8.5</th><th>0.2<=W</th><th>3.0KT</th><th>14<7</th><th>W=>i</th><th>0.2<=W</th><th>0.5<=W</th></t<>	0.2<-1	0.2<- W	2.6	20<=1V	S<=1V	8.5	0.2<=W	3.0KT	14<7	W=>i	0.2<=W	0.5<=W
ጽ	Fish	Jan. 24	•	£ 84	12	0.1<-W	0.1<-1V	0.2<=W	0.4 <t< th=""><th>3.8</th><th>001</th><th>S<-W</th><th>59</th><th>VJ->2'0</th><th>8.0</th><th>12<7</th><th>\/\=>l</th><th>0.2<=W</th><th>7.0</th></t<>	3.8	001	S<-W	59	VJ->2'0	8.0	12<7	\/\=>l	0.2<=W	7.0
		Feb. 12		x	12.9	£	ß	Ð	Ñ	£	86.5	ND ON	363	Q.	4.28	14.3	237	Æ	5.68
30	Fox	Jan. 23	:	T>09	6	W >10	0.2 <t< th=""><th>0.6<t< th=""><th>0.4<t< th=""><th>3.6</th><th>50×T</th><th>V1->\$</th><th>1.4</th><th>0.4<t< th=""><th>6.0</th><th>I&T</th><th>W->1</th><th>0.2<±W</th><th>3.5</th></t<></th></t<></th></t<></th></t<>	0.6 <t< th=""><th>0.4<t< th=""><th>3.6</th><th>50×T</th><th>V1->\$</th><th>1.4</th><th>0.4<t< th=""><th>6.0</th><th>I&T</th><th>W->1</th><th>0.2<±W</th><th>3.5</th></t<></th></t<></th></t<>	0.4 <t< th=""><th>3.6</th><th>50×T</th><th>V1->\$</th><th>1.4</th><th>0.4<t< th=""><th>6.0</th><th>I&T</th><th>W->1</th><th>0.2<±W</th><th>3.5</th></t<></th></t<>	3.6	50×T	V1->\$	1.4	0.4 <t< th=""><th>6.0</th><th>I&T</th><th>W->1</th><th>0.2<±W</th><th>3.5</th></t<>	6.0	I&T	W->1	0.2<±W	3.5
31	Frank	Jan. 23	:	±€7.	60	01< W	3.2	51	1>9'0	2.6	200	S< :W	48	0.2<=\V	5.5	12 <t< th=""><th>W=>I</th><th>0.2<=\V</th><th>12</th></t<>	W=>I	0.2<=\V	12
ĸ	Freeland	Feb. 2		169	24.3	£	£	Ð	2.17	£	£	143	161	Ŋ	8 26	17.1	R	Ð	16.9
33	Gail	Jan. 24	:	380	7	0.1<-W	0.2 <t< th=""><th>M->\$0</th><th>24</th><th>2.4</th><th>±0<t< th=""><th>S< W</th><th>87</th><th>0.4<t< th=""><th>7</th><th>?</th><th>N=>1</th><th>0.2<=\V</th><th>R</th></t<></th></t<></th></t<>	M->\$0	24	2.4	±0 <t< th=""><th>S< W</th><th>87</th><th>0.4<t< th=""><th>7</th><th>?</th><th>N=>1</th><th>0.2<=\V</th><th>R</th></t<></th></t<>	S< W	87	0.4 <t< th=""><th>7</th><th>?</th><th>N=>1</th><th>0.2<=\V</th><th>R</th></t<>	7	?	N=>1	0.2<=\V	R
		Feb. 12		320	164	Ð	Ð	Ð	239	Ð	£	£	81.4	Ð	14.7	6.07	£	£	21.2
3	Sem	Feb. 2		82.5	7	£	Ð	Ð	1.12	ě	159	£	57.7	Ð	5.67	14.5	3.03	Ð	8.12
35	George	SE FEE		a	33.6	Ð	Ð	Ð	1.09	£	£	5 92	160	Ð	6.42	18.5	Ą	Ą	12.5
36	Goose	Jan. 24	:	7>0¢		0.1<-\	0.1<-W	T>4.0	0.2< -\/\	2.2	120	S<=W	326	0.2<=\tr	3.0<7	14 <t< th=""><th>1<=V</th><th>0.2<=VV</th><th>3.0</th></t<>	1<=V	0.2<=VV	3.0
37	Goschen	Aug. 27	:	T>09		0.1<-\	0 2 <t< th=""><th>0.2<. W</th><th>W->5.0</th><th>3.2</th><th>001</th><th>S<=1//</th><th>20</th><th>0.2<=1V</th><th>7.5</th><th>78</th><th>N=>l</th><th>0.2<=W</th><th>3.0</th></t<>	0.2<. W	W->5.0	3.2	001	S<=1//	20	0.2<=1V	7.5	78	N=>l	0.2<=W	3.0
38	Grace	Feb 2		58.4	193	Ð	Ð	₽	69:1	£	£	9 5 8	88 3	Ø	6.33	9.93	Q.	Æ	12.6
39	Great Mt	Jan. 24	:	8 0<⊤	77	0.1< W	0.I< W	0.2<=W	0.4 <t< th=""><th>5.6</th><th>071</th><th>\$<. W</th><th>110</th><th>0.2<=\V</th><th>7.0</th><th>12<t< th=""><th>1<=W</th><th>0.2<=W</th><th>8.0</th></t<></th></t<>	5.6	071	\$<. W	110	0.2<=\V	7.0	12 <t< th=""><th>1<=W</th><th>0.2<=W</th><th>8.0</th></t<>	1<=W	0.2<=W	8.0
		Feb. 12		71.6	16.5	Ð	Ð	Ð	£	£	1	ĕ	3	Ð	1,69	11.9	N	£	864
9	Green	Jen. 23	:	QF_	=	0.1< W	0.2 <t< th=""><th>0.4<t< th=""><th>1.2</th><th>2.8</th><th>081</th><th>\$<=\\\</th><th>53</th><th>0.2<=W</th><th>7.5</th><th>20</th><th>N=>1</th><th>0.4<t< th=""><th>12</th></t<></th></t<></th></t<>	0.4 <t< th=""><th>1.2</th><th>2.8</th><th>081</th><th>\$<=\\\</th><th>53</th><th>0.2<=W</th><th>7.5</th><th>20</th><th>N=>1</th><th>0.4<t< th=""><th>12</th></t<></th></t<>	1.2	2.8	081	\$<=\\\	53	0.2<=W	7.5	20	N=>1	0.4 <t< th=""><th>12</th></t<>	12
4)	Grey	Aug. 27		902	23	0.1<-W	0.4 <t< th=""><th>0.2<~\V</th><th>2.2</th><th>2.6</th><th>160</th><th>N">\$</th><th>140</th><th>0.2<=W</th><th>11</th><th>₹</th><th>N=>1</th><th>0.2<=W</th><th>9</th></t<>	0.2<~\V	2.2	2.6	160	N">\$	140	0.2<=W	11	₹	N=>1	0.2<=W	9

Table 4 (cont.). Concentrations in ug/L. Method: ** = ICP-AES; blank = ICP-MS

Number	Name	Date	Method	₹	Z	- B	ਲ	ŗ	ડ	ਹੈ	. F.	£	Mn	Mo	ïZ	Sr	Ţ	^	72
42	Grow	Jan. 24	:	28AT	7	0.1<=\V	0.I<=\V	0.4 <t< th=""><th>0.2<rw< th=""><th>9.1</th><th>Ř</th><th>\$<÷W</th><th>61</th><th>0.2<=W</th><th>1.5<t< th=""><th>12<7</th><th>1<=W</th><th>0.4<t< th=""><th>1.5<7</th></t<></th></t<></th></rw<></th></t<>	0.2 <rw< th=""><th>9.1</th><th>Ř</th><th>\$<÷W</th><th>61</th><th>0.2<=W</th><th>1.5<t< th=""><th>12<7</th><th>1<=W</th><th>0.4<t< th=""><th>1.5<7</th></t<></th></t<></th></rw<>	9.1	Ř	\$<÷W	61	0.2<=W	1.5 <t< th=""><th>12<7</th><th>1<=W</th><th>0.4<t< th=""><th>1.5<7</th></t<></th></t<>	12<7	1<=W	0.4 <t< th=""><th>1.5<7</th></t<>	1.5<7
£1°	Hanwood	Feb. 2		£	7.34	£	ę	£	Q.	£	83	0.543	16.2	Q.	1.16	13.4	QV.	Q.	Ð
4	Нату	Jan. 23	:	20 <t< th=""><th>7</th><th>0.1<==W</th><th>03<t< th=""><th>V->2.0</th><th>0.2<=W</th><th>3.0</th><th>T×04</th><th>V1~>\$</th><th>6.5</th><th>0.4<t< th=""><th>4.5<t< th=""><th>12<t< th=""><th>1<=W</th><th>V->2.0</th><th>3.0</th></t<></th></t<></th></t<></th></t<></th></t<>	7	0.1<==W	03 <t< th=""><th>V->2.0</th><th>0.2<=W</th><th>3.0</th><th>T×04</th><th>V1~>\$</th><th>6.5</th><th>0.4<t< th=""><th>4.5<t< th=""><th>12<t< th=""><th>1<=W</th><th>V->2.0</th><th>3.0</th></t<></th></t<></th></t<></th></t<>	V->2.0	0.2<=W	3.0	T×04	V1~>\$	6.5	0.4 <t< th=""><th>4.5<t< th=""><th>12<t< th=""><th>1<=W</th><th>V->2.0</th><th>3.0</th></t<></th></t<></th></t<>	4.5 <t< th=""><th>12<t< th=""><th>1<=W</th><th>V->2.0</th><th>3.0</th></t<></th></t<>	12 <t< th=""><th>1<=W</th><th>V->2.0</th><th>3.0</th></t<>	1<=W	V->2.0	3.0
		Feb. 32		28.1	8.74	Ð	£	£	Ð.	£	Q.	1.08	7.87	QV.	4	11.5	Ð	£	89.
	Heaven	Jan. 23	:	340	6	0.1<∹W	0.2 <t< th=""><th>V1=>50</th><th>1.4</th><th>1.4</th><th>1100</th><th>\$<=11/</th><th>66</th><th>0.2<=\V</th><th>9.0</th><th>174</th><th>\n->I</th><th>0.2<=\V</th><th>Ξ</th></t<>	V1=>50	1.4	1.4	1100	\$<=11/	66	0.2<=\V	9.0	174	\n->I	0.2<=\V	Ξ
\$	Helen	Jan. 30		ઢ	13.2	Ð	Ð	£	1.11	QN O	147	5.22	85.4	QV.	3.16	15.8	3.01	Ð	5.59
47	Hemlock	Jan. 23	:	9 S	23	0.1<=\V	0.2 <t< th=""><th>0.2<rw< th=""><th>3.4</th><th>5.6</th><th>40×T</th><th>\$<=W</th><th>350</th><th>0.2<=W</th><th>14</th><th>16</th><th>1<=VV</th><th>0.2<=tV</th><th>18</th></rw<></th></t<>	0.2 <rw< th=""><th>3.4</th><th>5.6</th><th>40×T</th><th>\$<=W</th><th>350</th><th>0.2<=W</th><th>14</th><th>16</th><th>1<=VV</th><th>0.2<=tV</th><th>18</th></rw<>	3.4	5.6	40×T	\$<=W	350	0.2<=W	14	16	1<=VV	0.2<=tV	18
≈	Howry	Feb. 2		36.4	12.1	g	£.	₽ Q	Q.	£	786	N O	27.6	Ð	4.37	15.6	QN .	£	16.4
49	Ishmæel	Jun. 30		17.9	1.11	2	£	5	Ð	£	£	1.45	27.3	£	2:09	16.1	10.2	£	3.49
9.	Johnnie	Jan. 23	:	120	14	0.1< W	0.2 <t< th=""><th>V1->2.0</th><th>7</th><th>2.2</th><th>120</th><th>\$<=W</th><th>75</th><th>0.4<t< th=""><th>9.5</th><th>14</th><th>W=>I</th><th>0.2<=\V</th><th>**</th></t<></th></t<>	V1->2.0	7	2.2	120	\$<=W	75	0.4 <t< th=""><th>9.5</th><th>14</th><th>W=>I</th><th>0.2<=\V</th><th>**</th></t<>	9.5	14	W=>I	0.2<=\V	**
12	Kakakise	Jun. 30		23.3	21.5	£	Ð	£	P.	QN O	₽.	4,34	37	ON.	2.37	27.2	582	QN.	6.38
33	Kidney	Feb. 1		314	29.8	Ð	£	Ð	1.52	£	150	14.1	60.2	Q.	7.31	10.9	3.14	QN	27.6
83	Killamey	Jan. 30		238	23.6	£	£	£	2.48	£	5.2	69 1	148	Ð	9.89	14	NO.	QN.	18.5
3.	Lake of the	Aug. 27	:	120	61	0.1 <w< th=""><th>0.4<t< th=""><th>W-:>5 0</th><th>06<⊤</th><th>2.0</th><th>140</th><th>% :%</th><th>86</th><th>0.2<=₩</th><th></th><th>14</th><th>1<*1</th><th>0.2<∹₩</th><th>12</th></t<></th></w<>	0.4 <t< th=""><th>W-:>5 0</th><th>06<⊤</th><th>2.0</th><th>140</th><th>% :%</th><th>86</th><th>0.2<=₩</th><th></th><th>14</th><th>1<*1</th><th>0.2<∹₩</th><th>12</th></t<>	W-:>5 0	06<⊤	2.0	140	% :%	86	0.2<=₩		14	1<*1	0.2<∹₩	12
\$\$	Little Bell	Jan. 23	:	270	17	0 l<-W	0.1<-W	0.6 <t< th=""><th>56</th><th>2 8</th><th>380</th><th>V1=>5</th><th>82</th><th>0.2<=W</th><th>14</th><th>10KT</th><th>1<=W</th><th>Λ1*>2'0</th><th>12</th></t<>	56	2 8	380	V1=>5	82	0.2<=W	14	10KT	1<=W	Λ1*>2'0	12
		Jan. 30		172	19.1	£	ę	£	2.46	£	36	5.29	91	Æ	15.1	12	2.87	ΩN	13.8
*	Little Mink	Jan. 24	:	10×-1V	7	0.1<-\V	0.I<-\W	W=>2.0	W->2.0	9:1	#0<Ţ	\$<-1V	91	0.2<≖\V	2.0KT	20	Λι≖>l	0.2<=\V	\$<=\W
57	Little Mo.	Jan. 24	:	8	24	0.1<=\V	0.1<-\V	0.4 <t< th=""><th>2.0</th><th>0.1</th><th>60<t< th=""><th>V->\$</th><th>280</th><th>0.2<=\V</th><th>11</th><th>12<⊤</th><th>V/=> </th><th>0.2<=\V</th><th>12</th></t<></th></t<>	2.0	0.1	60 <t< th=""><th>V->\$</th><th>280</th><th>0.2<=\V</th><th>11</th><th>12<⊤</th><th>V/=> </th><th>0.2<=\V</th><th>12</th></t<>	V->\$	280	0.2<=\V	11	12<⊤	V/=>	0.2<=\V	12
88	Little Sh.	Feb. 1		77.5	15.6	£	S S	£	1.16	£	£	14.4	23.8	Ð	2.88	21.7	2.29	Q.	10.5
89	Little Sup	Jan. 23	:	35	18	0.1<•₩	0.4<⊤	0.2<=W	2.0	3.8	80 <t< th=""><th>V-××</th><th>160</th><th>0.2<≖W</th><th>16</th><th>€<t< th=""><th>Λ\=>I</th><th>0.4<t< th=""><th>28</th></t<></th></t<></th></t<>	V-××	160	0.2<≖W	16	€ <t< th=""><th>Λ\=>I</th><th>0.4<t< th=""><th>28</th></t<></th></t<>	Λ\=>I	0.4 <t< th=""><th>28</th></t<>	28
8	Log Boom	Jan. 23	:	110	7	0.1<=W	0.1<=√V	0.4 <t< th=""><th>80.</th><th>2.0</th><th>240</th><th>\$<=W</th><th>190</th><th>0.2<=\tr\</th><th>12</th><th>12</th><th>N=>1</th><th>0.2<=\V</th><th>10</th></t<>	80.	2.0	240	\$<=W	190	0.2<=\tr\	12	12	N=>1	0.2<=\V	10
19	Low	Jan 30		Ð	7.29	g	£	£	£	£	₽	1.22	4 99	Ð	£	27.3	Ð.	Q.	2.19
29	Lumsden	Jan. 30		175	19	S S	£	£	<u>z</u>	£	19	5.77	145	Æ	5.74	8.24	234	Ð	17.6

Table 4 (cont.) Concentrations in ug/L. Method: ** = ICP-AES; blank = ICP-MS

Jan. 24 Feb. 2		₹	æ	Be	8	Ċ	රී	ਟੋ	5	£	N _f	Mo	Z	Ş	#	>	72
Feb. 2	:	% <t< th=""><th>7</th><th>0.1<⊏W</th><th>0.1<=W</th><th>0.2<=\V</th><th>0.4<t< th=""><th>1.6</th><th>160</th><th>S<=W</th><th>3</th><th>0.2<∞W</th><th>3.5</th><th>14<t< th=""><th>1<=.∀</th><th>0.2<=W</th><th>1.5</th></t<></th></t<></th></t<>	7	0.1<⊏W	0.1<=W	0.2<=\V	0.4 <t< th=""><th>1.6</th><th>160</th><th>S<=W</th><th>3</th><th>0.2<∞W</th><th>3.5</th><th>14<t< th=""><th>1<=.∀</th><th>0.2<=W</th><th>1.5</th></t<></th></t<>	1.6	160	S<=W	3	0.2<∞W	3.5	14 <t< th=""><th>1<=.∀</th><th>0.2<=W</th><th>1.5</th></t<>	1<=.∀	0.2<=W	1.5
		951	21.4	Ð	Ð	R	2.97	Ę	Ð	4.26	123	S	9.25	=	£	Ę	14.7
Feb. 1		151	23.3	Ð	Ð	QN.	QN	Q.	S	1.35	92	Ę	6.79	14.8	£	£	19.6
Feb. 2		36.4	12.5	Ð	£	£	Q.	Ñ	85.1	33.5	28.2	Ð.	4.01	14.4	£	£	4.83
Feb 2		513	29.2	Ð	Ð	QZ.	5.15	QN	Q.	15.9	231	Ę	11.8	12.5	£	£	n
Norway Jan. 23	:	360	ដ	0.1<-√W	0.2 <t< td=""><td>0.2<±W</td><td>2.2</td><td>1.2</td><td>T>0₩</td><td>5< W</td><td>92</td><td>0 2<=W</td><td>10</td><td>14CT</td><td>N->1</td><td>0.2<=W</td><td>13</td></t<>	0.2<±W	2.2	1.2	T>0₩	5< W	92	0 2<=W	10	14CT	N->1	0.2<=W	13
O.S.A. Jan 30		ᇗ	22.4	B	Ð	£	GK.	Q.	Q.	12.3	155	ON.	8.2	14	£	£	19.3
Feb. 13	·	218	23.3	Ð	Ð	£	ON	Æ	QN	ON.	139	Q.	7.38	12	£	£	21.2
Partridge Jan 23	:	70 <t< td=""><td>17</td><td>W->10</td><td>01<-W</td><td>0.4<t< td=""><td>T>80</td><td>1.2</td><td>20<-W</td><td>W->\$</td><td>ス</td><td>V)=>2.0</td><td>99</td><td>12<</td><td>1<=W</td><td>0.2<-W</td><td>=</td></t<></td></t<>	17	W->10	01<-W	0.4 <t< td=""><td>T>80</td><td>1.2</td><td>20<-W</td><td>W->\$</td><td>ス</td><td>V)=>2.0</td><td>99</td><td>12<</td><td>1<=W</td><td>0.2<-W</td><td>=</td></t<>	T>80	1.2	20<-W	W->\$	ス	V)=>2.0	99	12<	1<=W	0.2<-W	=
Patten Feb. 2		297	22.9	Ð.	Ð	Æ	4.27	QN.	051	2.2	171	£	10.5	13	2.72	£	19.5
Pearl Feb. 1		183	27.4	Ð	QN	Ę	2.44	QN.	QN	3.45	95.3	£	7.13	14.5	£	£	15.6
Peter Feb. 12		4.67	136	Ð	Q.	Æ	QN	QN	QN	£	19.3	£	3.42	82	£	B	1.9
Pike Jan 23	:	705		0.1<=₩	₩->1.0	0.2<=W	0.6 <t< td=""><td>2.6</td><td>280</td><td>\$<=\W</td><td>61</td><td>0.2<=\V</td><td>٥</td><td>124</td><td>1<=W</td><td>T>4.0</td><td>3.5</td></t<>	2.6	280	\$<=\W	61	0.2<=\V	٥	124	1<=W	T>4.0	3.5
Proulx Jan. 23	:	3	3	0.1<-W	0.4 <t< td=""><td>W->2.0</td><td>3.2</td><td>3.2</td><td>1>01</td><td>\$<- W</td><td>140</td><td>0.2<::\W</td><td>15</td><td>12<1</td><td>1<=W</td><td>W=>2.0</td><td>38</td></t<>	W->2.0	3.2	3.2	1>0 1	\$<- W	140	0.2<::\W	15	12<1	1<=W	W=>2.0	38
Quantzile Feb. 2		308	92	Ð	Ð	£	3.5	Q.	Ð	1.72	죠	Ð	=	27.8	Ð	£	20.3
Aug 27	:	310	36	0.1<=W	0.3 <t< td=""><td>0.2<=₩</td><td>3</td><td>26</td><td>.w. >0z</td><td>\$<-W</td><td>200</td><td>0.2<=\W</td><td>10</td><td>10cT</td><td>/\=>1</td><td>0.2<=W</td><td>Я</td></t<>	0.2<=₩	3	26	.w. >0z	\$<-W	200	0.2<=\W	10	10cT	/\=>1	0.2<=W	Я
Rocky Jan. 24	:	30 <t< td=""><td>9</td><td>0.1<-W</td><td>0.1< W</td><td>0.2<=\!\</td><td>0.2<-W</td><td>1.8</td><td>#0<t< td=""><td>\$<: W</td><td>9</td><td>0.2<-W</td><td>2.0KT</td><td>14<</td><td>1<=\V</td><td>0.2<=\V</td><td>V=>\$ 0</td></t<></td></t<>	9	0.1<-W	0.1< W	0.2<=\!\	0.2<-W	1.8	#0 <t< td=""><td>\$<: W</td><td>9</td><td>0.2<-W</td><td>2.0KT</td><td>14<</td><td>1<=\V</td><td>0.2<=\V</td><td>V=>\$ 0</td></t<>	\$<: W	9	0.2<-W	2.0KT	14<	1<=\V	0.2<=\V	V=>\$ 0
Roque Feb. 2		358	1.15	Ð	2	£	4.35	Q.	139	46.4	202	Ð	6.58	01	2.32	£	29.5
RoundOt. Jan. 24	:	1>08	60	0.1<-W	0.1<-W	T>9.0	0.4 <t< td=""><td>1.8</td><td>280</td><td>\$<-W</td><td>8</td><td>0.2<=\V</td><td>4.0KT</td><td><u>18</u></td><td>2<</td><td>T>4.0</td><td>3.0</td></t<>	1.8	280	\$<-W	8	0.2<=\V	4.0KT	<u>18</u>	2<	T>4.0	3.0
Ruth-Roy Jan. 23	:	340	13	0.1<=\V	5.0	0.2<=\V	2.8	2	40 <t< td=""><td>\$<-W</td><td>86</td><td>0.4<t< td=""><td>14</td><td>₽\$</td><td>J<*W</td><td>0.2<=W</td><td>18</td></t<></td></t<>	\$<-W	86	0.4 <t< td=""><td>14</td><td>₽\$</td><td>J<*W</td><td>0.2<=W</td><td>18</td></t<>	14	₽\$	J<*W	0.2<=W	18
Sandy Jan. 23	:	250	23	0.1<=VV	0.2 <t< td=""><td>0.2<=\V</td><td>1.8</td><td>2</td><td>40<t< td=""><td>\$<-W</td><td>92</td><td>0.2<=W</td><td>=</td><td>₹</td><td>1<=W</td><td>0.2<~W</td><td>16</td></t<></td></t<>	0.2<=\V	1.8	2	40 <t< td=""><td>\$<-W</td><td>92</td><td>0.2<=W</td><td>=</td><td>₹</td><td>1<=W</td><td>0.2<~W</td><td>16</td></t<>	\$<-W	92	0.2<=W	=	₹	1<=W	0.2<~W	16
Sealey's Feb. 1		139	16.3	Ð	ð	£	Æ	QN.	653	20.9	120	£	3.12	20.8	2.2	£	4 12
Shigaug Feb 2		198	18.1	S S	ð	Ð	2.39	£	135	1.35	150	2	10.8	7.98	Ð	£	14.9

Table 4 (cont.). Concentrations in ugl. Method: ** = ICP-AES; blank = ICP-MS

454 Salidara, Images,	Date Method	3	8	Be	3	ō	3	₫	Fe	£	λſυ	Mo	Z	Š	14	^	52
Silver Inn. 25 *** 380		340	20	0.1<=W	0.3<7	0.2<=\V	2.2	7	40 <t< th=""><th>%=W</th><th>130</th><th>0.2<=W</th><th>10</th><th>\$<</th><th>1<=W</th><th>0.2<=W</th><th>20</th></t<>	%=W	130	0.2<=W	10	\$<	1<=W	0.2<=W	20
Solomon Feb. 2 284 221 ND ND ND 4.27 ND ND Sugarteal Feb. 2 445 243 ND ND ND 5.93 ND ND Teadrop Feb. 1 ND 13.5 ND ND ND ND ND ND ND N		380	2	0.1<=W	0.4 <t< th=""><th>0.2<=W</th><th>3,4</th><th>1.8</th><th>160</th><th>\$<=\W</th><th>81</th><th>0.2<=\tr\</th><th>14</th><th>10<</th><th>]<=W</th><th>0.2<=\V</th><th>17</th></t<>	0.2<=W	3,4	1.8	160	\$<=\W	81	0.2<=\tr\	14	10<]<=W	0.2<=\V	17
Spark Feb 2 600 38.2 ND ND ND 293 ND Teardrop Feb 1 445 243 ND ND ND 558 ND Teardrop Feb 1 445 243 ND		284	22.1	£	Q.	£	4.27	Ð	1750	34.3	169	Ð	6.48	10.1	2 26	Ð	21.1
Suegardual Feb. 2 445 243 ND ND ND 558 ND Teardrop Feb. 9 ND 13.5 ND ND ND ND ND Teard Feb. 9 ND 13.6 ND ND ND ND ND Teard Ian 30 215 16.3 ND ND ND ND ND ND Teard Ian 30 215 16.3 ND ND ND ND ND ND ND Teard Feb. 9 193 13.3 ND		009	28.2	Ð	S.	Ø	2.93	Ð	Ð	38.6	94.9	Ð	10.1	7.53	£	£	26.9
Teachtop Feb. 1 ND 13.5 ND ND ND ND ND ND The Three Leb 2 Feb. 9 215 16.3 ND ND ND 15.2 ND The Three Leb 2 18.4 12.5 ND ND ND 15.1 ND The Three Leb 2 18.4 12.5 ND ND ND 15.1 ND The Three Lab 3 ** 20 6 0.1 0.2 0.2 0.2 0.2 ND ND <t< th=""><th></th><th>445</th><th>24.3</th><th>QN</th><th>Æ</th><th>Æ</th><th>5.58</th><th>ND DI</th><th>52.1</th><th>29.8</th><th>198</th><th>Ð</th><th>8.16</th><th>8.08</th><th>2.01</th><th>£</th><th>8</th></t<>		445	24.3	QN	Æ	Æ	5.58	ND DI	52.1	29.8	198	Ð	8.16	8.08	2.01	£	8
Terry Jan 30 Lid ND ND ND ND ND ND ND N		£,	13.5	Ð	£	Ð	Q	£	Ð.	Ę	11.7	Ñ	Ñ	10.8	Ð	£	£
Terry Jan 30 215 163 ND ND ND 152 ND Lakes Feb. 2 184 12.5 ND ND ND 151 ND Lakes Feb. 9 193 13.3 ND ND ND 151 ND The Tri Se Aug. 27 ** 20 6 0.1 0.2 0.2 0.2 ND ND ND ND The Tri Se Aug. 27 ** 20 7 0.1 0.2 0.2 0.2 0.2 ND		Ą	13.6	£	ON.	£	QN	Æ	QV	16.3	11.8	Ð	Ð	10.5	Ð	£	£
The Three Lakes Lakes Feb 9 184 125 ND ND ND 151 ND Lakes Feb 9 193 13.3 ND ND ND 1.7 ND The Tri Se Aug 27 *** 20 6 0.1< 0.2 0.2< 0.2 0.8 1.0 The Tri Se Aug 27 *** 20 7 0.1 0.2 0.2 0.2 0.2 0.2 0.8 1.0 The Tri Se Aug 27 *** 20 7 0.1 0.1 0.2 0		215	16.3	£	Ę	Ð	1.52	QV.	348	945	85.5	Ð	8.58	18.3	2.92	£	13.9
The Tri S Aug. 27 ** 20 6 0,1< <w< th=""> ND ND 1.7 ND The Tri S Aug. 27 ** 20 6 0,1<<>W 0,2<<>W 0,2< 0 0,8 1.0 The Tri S Aug. 27 ** 20 7 0,1< W 0,4 0,2< W 0,8 1.0 The Tri S Aug. 27 ** 40 6 0,1< 0,1 0,4 0,2 0,2 W 1.0</w<>		184	12.5	QN	ND	QV.	1 51	QN	767	6.61	I	Ð	4.69	6.82	£	£	1.01
The Tri N Aug 27 ** 20 6 0,1<*W		193	13.3	QV.	S S	Ð	1.7	Q.	311	12.2	67.8	Ð	4.31	7.53	2.37	£	0.1
The Tri Se Aug 27 ** 20 7 0.1 < W		ន	Ŷ		0.2 <t< td=""><td>0.2<-W</td><td>0 2<−\V</td><td>0.8<t< td=""><td>T>0₽</td><td>\$<=\l/\</td><td>7</td><td>0.2<='\!V</td><td>2.5</td><td>)(</td><td>V=>I</td><td>0.2<=\V</td><td>0.5<-W</td></t<></td></t<>	0.2<-W	0 2<−\V	0.8 <t< td=""><td>T>0₽</td><td>\$<=\l/\</td><td>7</td><td>0.2<='\!V</td><td>2.5</td><td>)(</td><td>V=>I</td><td>0.2<=\V</td><td>0.5<-W</td></t<>	T>0₽	\$<=\l/\	7	0.2<='\!V	2.5)(V=>I	0.2<=\V	0.5<-W
The Tri Sw Aug. 27 ** 40 6 0 c-W 0.5 0 2 c-W 0 2 c-W 1.6 The Tri Sw Aug. 27 ** 435 184 ND ND ND ND ND Turbid Aug. 27 ** 150 21 0 c-W 0 2 c-M ND ND ND Turbid Aug. 27 ** 150 21 0 c-W 0 2 c-M 0 8 c/r ND ND Turbid Aug. 27 ** 150 21 0 c-W 0 2 c-M 0 8 c/r 20 Turbidosc Feb. 2 ND 31.1 ND ND ND ND ND Van Winkey Jan. 30 ND 8 53 ND ND ND ND ND ND Whiskey Jan. 23 ** 560 19 0 c-W ND ND ND ND ND ND York Feb. 2 ** 560 19 0 c-	_	e.	7	_ ⊻ }	0 J<-W	0.4 <t< td=""><td>0.2< W</td><td>1.0</td><td>80</td><td>\$< :W</td><td>20</td><td>0.2<=\tr\</td><td>3</td><td>16</td><td>1<=W</td><td>0.2<=\V</td><td><u>18</u></td></t<>	0.2< W	1.0	80	\$< :W	20	0.2<=\tr\	3	16	1<=W	0.2<=\V	<u>18</u>
Threenarr. Jan 30 72.8 18.4 ND ND ND ND ND Topaz Feb 1 *** 150 21 01 ND ND 2.65 ND Turbid Aug. 27 *** 150 21 01 ND ND 2.65 ND Turleback Feb 2 ND 31.1 ND ND ND ND ND Van Van Vink Feb 2 ND 853 ND ND ND ND ND Whiskeyj Jan. 23 *** 560 19 01< ND ND ND ND York Feb 2 Not 11.2 ND ND ND ND ND ND		ş	٥	- 1	0.5	0.2<±\V	0.2<=\V	9.1	80	\$<=\W	6.5	0.2<=\V	4	12	1<=W	0.2<=W	1.54
Topaz Feb. I 435 28 ND ND ND 265 ND Turbid Aug. 27 •• 150 21 01 02 02 08 20 Turleback Feb. 2 136 31.1 ND ND ND 3.59 ND Van Vink Feb. 2 ND 9.47 ND ND ND ND ND Van Vink Feb. 2 ND 853 ND ND ND ND ND Whiskeyj Jan. 23 •• 560 19 01< ND ND ND ND ND York Feb. 2 560 19 01< ND ND ND ND ND		72.8	18.1	Ð	Ð	Æ	Ω.	QV.	62.3	3.81	88	Ð	6.26	15.9	2.13	£	10.2
Turbid Aug 27 •• 150 21 01<-W		435	80	Ð	Ð	Ð	2.65	QV	Q.	5 18	153	NO	10.2	10.1	2.31	£	25.4
Turleback Feb 2 ND 31.1 ND ND ND 3.59 ND Van Feb 2 ND 9.47 ND ND ND ND ND Van Vinggon R. Jan. 30 ND 188 14.7 ND ND ND ND ND Whiskeyj Jan. 23 *** 560 19 01< ND ND ND ND ND York Feb 2 63.4 11.2 ND ND ND ND ND ND	\dashv	<u>s</u>	17		0.2 <t< td=""><td>0.2<=vV</td><td>0 8<t< td=""><td>2.0</td><td>200</td><td>\$<*\V</td><td>110</td><td>0.2<=W</td><td>14</td><td>.<u>⊼</u></td><td>]<≖W</td><td>0.2<=\text{W}</td><td>13</td></t<></td></t<>	0.2<=vV	0 8 <t< td=""><td>2.0</td><td>200</td><td>\$<*\V</td><td>110</td><td>0.2<=W</td><td>14</td><td>.<u>⊼</u></td><td>]<≖W</td><td>0.2<=\text{W}</td><td>13</td></t<>	2.0	200	\$<*\V	110	0.2<=W	14	. <u>⊼</u>]<≖W	0.2<=\text{W}	13
Van Vink. Feb 2 ND 9.47 ND ND ND ND ND ND Wegon R. Jan. 30 138 14.7 ND ND ND 1.19 ND Whiskeyj Jan. 23 ** 560 19 01<<-1V 18 2.2 3.6 2.8 York Feb 2 63.4 11.2 ND ND ND ND ND ND		<u>%</u>	31.1	Ð	Q.	Æ	3.59	Q.	Q.	12.9	71.2	Ð	6.79	16	£	Ð	79.6
Van Wink Feb. 2 ND 8.53 ND		£	6.47	Ð	Ę	Ð	ND ON	Ω	Q.	41.4	23.6	Ð	2.28	13	£	Ð	3.61
Wagson R. Jan. 30 138 14.7 ND ND ND 1.19 ND Whiskeyj Jan. 23 •• 560 19 01<<=1W 18 22 3.6 2.8 York Feb 2 63.4 11.2 ND ND ND ND ND		£	8 53	Ð	£	S	Đ.	Ð	Ω.	Ð	7.06	Q.	1.61	11.7	£	Ð	£
Whiskeyj Jan. 23 •• 560 19 01<=W 18 22 3.6 2.8 York Feb 2 63.4 11.2 ND ND ND ND ND		138	14.7	£	£	Ð	1.19	Ð	364	6.33	152	Đ.	3.08	18.3	2.89	£	5.06
York Feb. 2 63.4 11.2 ND ND ND ND ND		98	61	0 1<=W	1.8	2.2	3.6	2.8	40 <t< td=""><td>\$<=\W</td><td>780</td><td>0.2<=\V</td><td>91</td><td>12<t< td=""><td>1<=W</td><td>0.6<t< td=""><td>2</td></t<></td></t<></td></t<>	\$<=\W	780	0.2<=\V	91	12 <t< td=""><td>1<=W</td><td>0.6<t< td=""><td>2</td></t<></td></t<>	1<=W	0.6 <t< td=""><td>2</td></t<>	2
		63.4	11.2	Ž	Q Z	Æ	Q.	£	5.96	2.54	10.5	CIN	5.14	19.1	£	Ð	5.52
104 #3 Feb.12 350 22.8 ND ND ND 3.04 ND 262	2	350	22.8	£	£	£	3.04	Ð	292	1.25	79.2	Ę	15.9	11.5	2.56	Ð	18

Table 4 (cont.). Concentrations in ug/L. Method: ** = ICP-AES; blank = ICP-MS

_	-		_	_							_			_									_
25	24.4	9.81	9.93	5.44	17.3	10.4	29.2	21.7	21.1	82	7.22	27.9	5	25.8	16.8	18.8	17.4	15.7	12	13.4	••	13.7	14
>	£	Ę	£	ð	Ę	Ę	£	£	Ę	0.2<-W	Ð	£	£	£	Ę	£	Ð	£	0.2<=\V	£	0.4 <t< td=""><td>Ð</td><td>0.4<t< td=""></t<></td></t<>	Ð	0.4 <t< td=""></t<>
Ţ	17.7	2972	3.03	2.55	3.32	2.48	2.52	2.1	2 14	W=>I	2.36	2.41	2.01	2.9	QV.	3.1	Ð	2.25	N=>1	, 6	l<=.W	Ð	N=>I
Sr	91	8.44	9.88	7.08	7.49	8.35	5.56	7.2	9.72	8 <t< td=""><td>7.33</td><td>12.2</td><td>8.69</td><td>7.38</td><td>6.12</td><td>5.15</td><td>4.74</td><td>6</td><td>Ã</td><td>90</td><td>8€</td><td>29.2</td><td>₽9</td></t<>	7.33	12.2	8.69	7.38	6.12	5.15	4.74	6	Ã	90	8 €	29.2	₽9
ž	18.4	10.3	8.01	9.42	14.2	6:01	11.4	10.4	9.17	6	10.9	=	69.6	11.2	8.2	9.37	8.09	7.22	6.5	-6.37	5.5	1.11	10
Mo	Æ	Q.	NO.	N CE	Ð	Q.	ND	NO	Q.	0.2<=W	Ð	Ð	Ð	£	Ð	Q.	Q.	Ð	0.4 <t< td=""><td>£</td><td>0.2<=\V</td><td>Ð</td><td>0.2<=W</td></t<>	£	0.2<=\V	Ð	0.2<=W
λfn	82 2	47.2	63.4	\$1.6	1.82	901	63.9	59.3	162	140	73.4	7.78	75.5	133	62.2	48.2	65.2	84.2	73	1.79	62	67	3
£	10.8	Q.	Q.	ND	1.69	18.2	22	Ð	671	\$<-\V	15.4	4 32	5.09	2.51	32.5	4.2	13.4	2.8	N=>5	122	A\=>\$	90.6	S<=1V
Fe	205	235	260	357	22	204	283	2410	187	40<⊤	13.1	\$01	ξ.	422	£	808	144	Q.	120	£	100	52.3	<u>₽</u>
ੋ	Ð	Œ	£	Ð	Q.	Ð	Ð	Ð	£	9:1	Q.	ND	QV.	QN	Ð	Œ.	Q.	£	0.6 <t< td=""><td>£</td><td><u>8.</u></td><td>£</td><td>2</td></t<>	£	<u>8.</u>	£	2
రి	2.88	1.38	1.64	ON.	3.28	212	3 03	3.65	19.9	4.8	2.56	4.87	3.59	5 92	2.95	1.63	2.11	261	1.2	81	0.8 <t< td=""><td>1.28</td><td>0.8<t< td=""></t<></td></t<>	1.28	0.8 <t< td=""></t<>
Ü	£	£	Ğ	£	£	ξ	Ð	£	Ć.	0.2<=\V	S	Ð	£	ND	£	£	ND	ND	0.2< W	£	0.2< ·W	Q.	0.2<±W
ਲ	£	ð	Ð	£	Ð	Ð	Ę	£	Ð	0.2 <t< td=""><td>Ð</td><td>£</td><td>Ð</td><td>Ð</td><td>£</td><td>₽</td><td>QN</td><td>Ð</td><td>02<t< td=""><td>QV</td><td>03<t< td=""><td>Ą</td><td>1>4:0</td></t<></td></t<></td></t<>	Ð	£	Ð	Ð	£	₽	QN	Ð	02 <t< td=""><td>QV</td><td>03<t< td=""><td>Ą</td><td>1>4:0</td></t<></td></t<>	QV	03 <t< td=""><td>Ą</td><td>1>4:0</td></t<>	Ą	1>4:0
Be	Ð	Ð	Ð	£	£	ð	Ę	£	£	0.1 <r< td=""><td>Q.</td><td>£</td><td>5 G</td><td>Q.</td><td>ð</td><td>£</td><td>ND</td><td>ď</td><td>V. =>1.0</td><td>QN :</td><td>0.1< W</td><td>Ą</td><td>0.1<rw< td=""></rw<></td></r<>	Q.	£	5 G	Q.	ð	£	ND	ď	V. =>1.0	QN :	0.1< W	Ą	0.1 <rw< td=""></rw<>
R.	34.4	9:01	13.9	8.47	17.6	14.9	16.4	206	43.4	22	30.8	37.7	26.4	21.3	21.9	13.2	13.6	23.6	12	17.4	18	15.1	1
₹	394	139	- 15e	127	556	234	7.54	\$59	405	230	3,	328	288	572	407	컄	199	216	20 <	243	140	214	220
Method										:									:		:		:
Date	Feb. 12	Feb. 9	Feb. 9	Feb 9	Aug. 27	Feb. 9	Aug. 27	Feb. 9	Aug 27	Feb. 9	Aug. 27												
Name	7	ž.	94	LH.	Ę.	#12	#1.7	at 18	419		#20	157	17.7	#23	#24	#25	#26	75#		ж С3		62	
Number	105	90	107	801	82	110	Ξ	112	113		114	115	911	117	118	119	120	121		132		123	
_			_						_		_				_	_	_						

Table 4 (cont.). Concentrations in ug/L. Method: ** = ICP-AES; blank = ICP-MS

					_		_	_	_	_		_	_		_		_	_	_	_	_		Т
ភ	21	12	18.8	25.4	12.9	522	283	15.9	10.5	7.46	23.4	23.1	19.7	17.2	24.6	18.5	3.92	24.5	=	611	2	21.1	١
^	QN	0.2<=1V	QN.	£	£	₽	£	Ð	£	₽	£	£	£	£	£	£	£	Ð	£	Ę	£	£	٤
Ţi	2.31	M=>1	2.84	2.71	3.14	£	3.79	Ð	3.99	2.56	5.49	2.63	2.64	Ð	Ð	Ð	ĕ	2.37	Ð	Ð	£	2:09	,
Sr	8.72	\$<₹	14.2	\$0.6	22.5	20.2	12.2	9.84	14.4	11.5	7.29	7.98	4.83	5.17	6.98	6.75	20.8	11.2	80 27 20	8.34	11.1	8.58	8
ž	8.74	6.5	8.79	11.7	5.75	2.86	11.1	10.3	9.58	8.82	11.6	112	10.5	10	10.3	8.61	2.14	5.17	4.21	4.58	5.44	5.17	8
Mo	QN.	0.2<=W	ΩV	Q	ND	£	Ð	Ð	Ð	£	£	Q.	Đ.	Ð	£	Q.	£	Ð	£	Ð	Ð	Ð	Ę
Ma	78.8	78	108	116	112	7.14	<u>%</u>	103	32.7	27.3	61.2	601	98	76.2	130	91.3	4.78	134	81.7	9.59	9.99	159	707
£	29.6	\$<=\V	1.85	£	Ð	Ð	206.0	3.39	27	4.17	13.7	121	149	3.59	8.4.8	Ð	113	£	3.69	22.9	5.9	9.65	Ę
ñ	6.79	50×T	£	Ð	125	Œ	181	£	429	270	297	100	83.7	011	Ð	Ð	Q.	351	302	158	Q.	113	743
ਰੋ	Ð	2.4	Æ	Ð	Æ	Q	Ð	Ð	Q	Ð	Ð	Q.	Q.	QV	Q.	CIN.	£	£	£	£	Ð	£	£
రి	297	2.4	2.25	5.03	£	QN ON	191	1.95	£	Q.	3.27	5.25	2.55	2.07	3.92	3.22	£	3.21	1.4	1.1	Ð	2.9	5.76
ō	NO.	0.2<=V	Ð	ON.	R	Ð	£	æ	£	£	£	Ð	Q.	Ð	Ð	£	£	Ð	Æ	₽.	N.	£	£
3	Q	0.2 <t< td=""><td>£</td><td>Ð</td><td>Ð</td><td>Ð</td><td>Ð</td><td>£</td><td>Q.</td><td>Ð</td><td>Q.</td><td>Ð</td><td>Q</td><td>Ð</td><td>Q</td><td>Ð</td><td>£</td><td>Ð</td><td>Ð</td><td>£</td><td>Q</td><td>æ</td><td>£</td></t<>	£	Ð	Ð	Ð	Ð	£	Q.	Ð	Q.	Ð	Q	Ð	Q	Ð	£	Ð	Ð	£	Q	æ	£
88	Ð	0.1<=₩	£	Q.	£	QV.	Ð	QV	£	Q.	£	Q.	£	Q	£	Ð	£	£	£	Ð	QN	Ð	Ð
8	872	6	32.6	18.9	20.6	13.9	24.6	25.1	10.5	9.39	21.3	25.3	1.91	16.3	18.6	16.3	11.4	20.8	15.1	.14.6	22.3	21.6	29.9
₹	351	90 <t< td=""><td>212</td><td>₹</td><td>120</td><td>35.6</td><td>477</td><td>223</td><td>171</td><td>135</td><td>757</td><td>8</td><td>574</td><td>467</td><td>452</td><td>734</td><td>28.7</td><td>346</td><td>163</td><td>129</td><td>128</td><td>244</td><td>328</td></t<>	212	₹	120	35.6	477	223	171	135	757	8	574	467	452	734	28.7	346	163	129	128	244	328
Method		:										·											
Date	Peb. 9	Aug. 27	Feb. 12	Feb.9	Feb.9	Feb. 9	Feb 9	Feb. 13	Feb 13	Feb. 13	Feb. 12	Feb 12	Feb 12	Feb. 12	Feb 12	Fcb. 12	Feb. 12	Feb 9	Feb. 9	Feb. 9	Feb. 9	Feb. 9	Feb. 9
Name	96.90		#33	#35	#36	#37A	86#	0 11 0	п.45	977	150	#SI	Ş.	#53	7.	8.55	65#	19#	165	99#	89#	69#	#71
Number	124		125	126	127	128	621	130	131	132	133	<u>z</u>	135	36	137	138	139	2	7	142	143	4	145

Table 4 (cont.). Concentrations in ug/L. Method: ** = ICP-AES; blank = ICP-MS

_	_	-		_	_	
5	97.9	6.34	£	13.3	17.8	28.9
>	Ð	Ð	Ð	Ø	Ø.	Ð
Ţ	3.6	2.36	231	2.95	2.28	2.75
Sr	25.8	16.1	28.8	5.74	11.1	7.85
Z	2.46	3.26	Ą	5.43	8.62	12
Mo	Ð	S	Ð	S.	N.	Ø
Mfa	53.5	59.4	45.9	45.6	136	522
æ	4.92	ON.	7.32	3.18	25.7	Đ.
Fe	353	335	QN	106	128	485
C	N.	QN	QN	QN	QN	QN
ರೆ	ND	ON.	QV.	ND	2.65	666
Ç	ND	QN	QN	ND	QN	QN.
23	ND	ND	QN.	QN	ΩN	Q.
æ	ON	QN	QN.	QN	CIN	Ð
B.	127	10.4	14.6	11.6	30.8	23.3
A	7.79	211	QN	357	172	\$26
Method						
Date	Feb. 12	Feb. 12	Feb. 12	Feb. 9	Feb. 9	Feb. 13
Name	ET.11	H7.4	97 pt	67.8	08#	#82
Number	146	147	<u>\$7</u>	149	82	151